Search Results for

    Show / Hide Table of Contents

    Class DirichletFromPseudoCountsOp

    Provides outgoing messages for SampleFromPseudoCounts(Vector), given random arguments to the function.

    Inheritance
    Object
    DirichletFromPseudoCountsOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(new string[]{"sample", "pseudoCounts"}, typeof(Dirichlet), "SampleFromPseudoCounts", new Type[]{})]
    [Quality(QualityBand.Stable)]
    public static class DirichletFromPseudoCountsOp

    Methods

    AverageLogFactor(Dirichlet, Vector, Dirichlet)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Dirichlet sample, Vector pseudoCounts, Dirichlet to_sample)
    Parameters
    Type Name Description
    Dirichlet sample

    Incoming message from sampleFromPseudoCounts.

    Vector pseudoCounts

    Constant value for pseudoCount.

    Dirichlet to_sample

    Outgoing message to sample.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(sampleFromPseudoCounts) p(sampleFromPseudoCounts) log(factor(sampleFromPseudoCounts,pseudoCount)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Vector, Vector)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Vector sample, Vector pseudoCounts)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sampleFromPseudoCounts.

    Vector pseudoCounts

    Constant value for pseudoCount.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sampleFromPseudoCounts,pseudoCount)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    LogAverageFactor(Dirichlet, Vector, Dirichlet)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Dirichlet sample, Vector pseudoCounts, Dirichlet to_sample)
    Parameters
    Type Name Description
    Dirichlet sample

    Incoming message from sampleFromPseudoCounts.

    Vector pseudoCounts

    Constant value for pseudoCount.

    Dirichlet to_sample

    Outgoing message to sample.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(sampleFromPseudoCounts) p(sampleFromPseudoCounts) factor(sampleFromPseudoCounts,pseudoCount)).

    LogAverageFactor(Vector, Vector)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Vector sample, Vector pseudoCounts)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sampleFromPseudoCounts.

    Vector pseudoCounts

    Constant value for pseudoCount.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sampleFromPseudoCounts,pseudoCount)).

    LogEvidenceRatio(Dirichlet, Vector)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Dirichlet sample, Vector pseudoCounts)
    Parameters
    Type Name Description
    Dirichlet sample

    Incoming message from sampleFromPseudoCounts.

    Vector pseudoCounts

    Constant value for pseudoCount.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(sampleFromPseudoCounts) p(sampleFromPseudoCounts) factor(sampleFromPseudoCounts,pseudoCount) / sum_sampleFromPseudoCounts p(sampleFromPseudoCounts) messageTo(sampleFromPseudoCounts)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Vector, Vector)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Vector sample, Vector pseudoCounts)
    Parameters
    Type Name Description
    Vector sample

    Constant value for sampleFromPseudoCounts.

    Vector pseudoCounts

    Constant value for pseudoCount.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(sampleFromPseudoCounts,pseudoCount)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    SampleAverageConditional(Vector)

    EP message to sampleFromPseudoCounts.

    Declaration
    public static Dirichlet SampleAverageConditional(Vector pseudoCounts)
    Parameters
    Type Name Description
    Vector pseudoCounts

    Constant value for pseudoCount.

    Returns
    Type Description
    Dirichlet

    The outgoing EP message to the sampleFromPseudoCounts argument.

    Remarks

    The outgoing message is the factor viewed as a function of sampleFromPseudoCounts conditioned on the given values.

    SampleAverageLogarithm(Vector)

    VMP message to sampleFromPseudoCounts.

    Declaration
    public static Dirichlet SampleAverageLogarithm(Vector pseudoCounts)
    Parameters
    Type Name Description
    Vector pseudoCounts

    Constant value for pseudoCount.

    Returns
    Type Description
    Dirichlet

    The outgoing VMP message to the sampleFromPseudoCounts argument.

    Remarks

    The outgoing message is the factor viewed as a function of sampleFromPseudoCounts conditioned on the given values.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.