Search Results for

    Show / Hide Table of Contents

    Class DifferenceBetaOp

    Provides outgoing messages for Difference(Double, Double), given random arguments to the function.

    Inheritance
    Object
    DifferenceBetaOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Factor), "Difference", new Type[]{typeof(double), typeof(double)})]
    [Quality(QualityBand.Experimental)]
    public static class DifferenceBetaOp

    Methods

    AAverageConditional(Gaussian, Beta)

    EP message to a.

    Declaration
    public static Beta AAverageConditional(Gaussian difference, Beta b)
    Parameters
    Type Name Description
    Gaussian difference

    Incoming message from difference. Must be a proper distribution. If uniform, the result will be uniform.

    Beta b

    Incoming message from b.

    Returns
    Type Description
    Beta

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(difference,b) p(difference,b) factor(difference,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    difference is not a proper distribution.

    BAverageConditional(Gaussian, Beta)

    EP message to b.

    Declaration
    public static Beta BAverageConditional(Gaussian difference, Beta a)
    Parameters
    Type Name Description
    Gaussian difference

    Incoming message from difference. Must be a proper distribution. If uniform, the result will be uniform.

    Beta a

    Incoming message from a.

    Returns
    Type Description
    Beta

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(difference,a) p(difference,a) factor(difference,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    difference is not a proper distribution.

    DifferenceAverageConditional(Beta, Beta)

    EP message to difference.

    Declaration
    public static Gaussian DifferenceAverageConditional(Beta a, Beta b)
    Parameters
    Type Name Description
    Beta a

    Incoming message from a.

    Beta b

    Incoming message from b.

    Returns
    Type Description
    Gaussian

    The outgoing EP message to the difference argument.

    Remarks

    The outgoing message is a distribution matching the moments of difference as the random arguments are varied. The formula is proj[p(difference) sum_(a,b) p(a,b) factor(difference,a,b)]/p(difference).

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.