Class DampForwardOp<T>
Provides outgoing messages for Forward<T>(T, Double), given random arguments to the function.
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Factors
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[FactorMethod(typeof(Damp), "Forward<>", new Type[]{})]
[Quality(QualityBand.Preview)]
public static class DampForwardOp<T>
Type Parameters
Name | Description |
---|---|
T |
Methods
AverageLogFactor()
Evidence message for VMP.
Declaration
public static double AverageLogFactor()
Returns
Type | Description |
---|---|
Double | Zero. |
Remarks
The formula for the result is log(factor(forward,value,stepsize))
. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.
ForwardAverageConditional<Distribution>(Distribution, Double, Distribution)
EP message to forward
.
Declaration
public static Distribution ForwardAverageConditional<Distribution>(Distribution value, double stepsize, Distribution to_forward)
where Distribution : SettableToPower<Distribution>, SettableToProduct<Distribution>, HasPoint<T>, SettableToWeightedSum<Distribution>, SettableToUniform
Parameters
Type | Name | Description |
---|---|---|
Distribution | value | Incoming message from |
Double | stepsize | Constant value for |
Distribution | to_forward | Previous outgoing message to |
Returns
Type | Description |
---|---|
Distribution | The outgoing EP message to the |
Type Parameters
Name | Description |
---|---|
Distribution | The type of the distribution over the damped variable. |
Remarks
The outgoing message is a distribution matching the moments of forward
as the random arguments are varied. The formula is proj[p(forward) sum_(value) p(value) factor(forward,value,stepsize)]/p(forward)
.
Exceptions
Type | Condition |
---|---|
ImproperMessageException |
|
ForwardAverageLogarithm<Distribution>(Distribution, Double, Distribution)
Declaration
public static Distribution ForwardAverageLogarithm<Distribution>(Distribution value, double stepsize, Distribution to_forward)
where Distribution : SettableToPower<Distribution>, SettableToProduct<Distribution>, HasPoint<T>, SettableToWeightedSum<Distribution>, SettableToUniform
Parameters
Type | Name | Description |
---|---|---|
Distribution | value | |
Double | stepsize | |
Distribution | to_forward |
Returns
Type | Description |
---|---|
Distribution |
Type Parameters
Name | Description |
---|---|
Distribution | The type of the distribution over the damped variable. |
LogEvidenceRatio()
Evidence message for EP.
Declaration
public static double LogEvidenceRatio()
Returns
Type | Description |
---|---|
Double | Logarithm of the factor's contribution the EP model evidence. |
Remarks
The formula for the result is log(factor(forward,value,stepsize))
. Adding up these values across all factors and variables gives the log-evidence estimate for EP.
ValueAverageConditional<Distribution>(Distribution)
EP message to value
.
Declaration
public static Distribution ValueAverageConditional<Distribution>(Distribution forward)
Parameters
Type | Name | Description |
---|---|---|
Distribution | forward | Incoming message from |
Returns
Type | Description |
---|---|
Distribution | The outgoing EP message to the |
Type Parameters
Name | Description |
---|---|
Distribution | The type of the distribution over the damped variable. |
Remarks
The outgoing message is a distribution matching the moments of value
as the random arguments are varied. The formula is proj[p(value) sum_(forward) p(forward) factor(forward,value,stepsize)]/p(value)
.
ValueAverageLogarithm<Distribution>(Distribution)
VMP message to value
.
Declaration
public static Distribution ValueAverageLogarithm<Distribution>(Distribution forward)
Parameters
Type | Name | Description |
---|---|---|
Distribution | forward | Incoming message from |
Returns
Type | Description |
---|---|
Distribution | The outgoing VMP message to the |
Type Parameters
Name | Description |
---|---|
Distribution | The type of the distribution over the damped variable. |
Remarks
The outgoing message is the factor viewed as a function of value
with forward
integrated out. The formula is sum_forward p(forward) factor(forward,value,stepsize)
.