Search Results for

    Show / Hide Table of Contents

    Class DampForwardOp<T>

    Provides outgoing messages for Forward<T>(T, Double), given random arguments to the function.

    Inheritance
    Object
    DampForwardOp<T>
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Damp), "Forward<>", new Type[]{})]
    [Quality(QualityBand.Preview)]
    public static class DampForwardOp<T>
    Type Parameters
    Name Description
    T

    Methods

    AverageLogFactor()

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor()
    Returns
    Type Description
    Double

    Zero.

    Remarks

    The formula for the result is log(factor(forward,value,stepsize)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    ForwardAverageConditional<Distribution>(Distribution, Double, Distribution)

    EP message to forward.

    Declaration
    public static Distribution ForwardAverageConditional<Distribution>(Distribution value, double stepsize, Distribution to_forward)
        where Distribution : SettableToPower<Distribution>, SettableToProduct<Distribution>, HasPoint<T>, SettableToWeightedSum<Distribution>, SettableToUniform
    Parameters
    Type Name Description
    Distribution value

    Incoming message from value. Must be a proper distribution. If uniform, the result will be uniform.

    Double stepsize

    Constant value for stepsize.

    Distribution to_forward

    Previous outgoing message to forward.

    Returns
    Type Description
    Distribution

    The outgoing EP message to the forward argument.

    Type Parameters
    Name Description
    Distribution

    The type of the distribution over the damped variable.

    Remarks

    The outgoing message is a distribution matching the moments of forward as the random arguments are varied. The formula is proj[p(forward) sum_(value) p(value) factor(forward,value,stepsize)]/p(forward).

    Exceptions
    Type Condition
    ImproperMessageException

    value is not a proper distribution.

    ForwardAverageLogarithm<Distribution>(Distribution, Double, Distribution)

    Declaration
    public static Distribution ForwardAverageLogarithm<Distribution>(Distribution value, double stepsize, Distribution to_forward)
        where Distribution : SettableToPower<Distribution>, SettableToProduct<Distribution>, HasPoint<T>, SettableToWeightedSum<Distribution>, SettableToUniform
    Parameters
    Type Name Description
    Distribution value
    Double stepsize
    Distribution to_forward
    Returns
    Type Description
    Distribution
    Type Parameters
    Name Description
    Distribution

    The type of the distribution over the damped variable.

    LogEvidenceRatio()

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio()
    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(forward,value,stepsize)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    ValueAverageConditional<Distribution>(Distribution)

    EP message to value.

    Declaration
    public static Distribution ValueAverageConditional<Distribution>(Distribution forward)
    Parameters
    Type Name Description
    Distribution forward

    Incoming message from forward.

    Returns
    Type Description
    Distribution

    The outgoing EP message to the value argument.

    Type Parameters
    Name Description
    Distribution

    The type of the distribution over the damped variable.

    Remarks

    The outgoing message is a distribution matching the moments of value as the random arguments are varied. The formula is proj[p(value) sum_(forward) p(forward) factor(forward,value,stepsize)]/p(value).

    ValueAverageLogarithm<Distribution>(Distribution)

    VMP message to value.

    Declaration
    public static Distribution ValueAverageLogarithm<Distribution>(Distribution forward)
    Parameters
    Type Name Description
    Distribution forward

    Incoming message from forward.

    Returns
    Type Description
    Distribution

    The outgoing VMP message to the value argument.

    Type Parameters
    Name Description
    Distribution

    The type of the distribution over the damped variable.

    Remarks

    The outgoing message is the factor viewed as a function of value with forward integrated out. The formula is sum_forward p(forward) factor(forward,value,stepsize).

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.