Search Results for

    Show / Hide Table of Contents

    Class DampBackwardOp

    Provides outgoing messages for Backward<T>(T, Double), given random arguments to the function.

    Inheritance
    Object
    DampBackwardOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Damp), "Backward<>", new Type[]{})]
    [Quality(QualityBand.Preview)]
    public static class DampBackwardOp

    Methods

    AverageLogFactor()

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor()
    Returns
    Type Description
    Double

    Zero.

    Remarks

    The formula for the result is log(factor(backward,value,stepsize)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    BackwardAverageConditional<Distribution>(Distribution)

    EP message to backward.

    Declaration
    public static Distribution BackwardAverageConditional<Distribution>(Distribution value)
    Parameters
    Type Name Description
    Distribution value

    Incoming message from value.

    Returns
    Type Description
    Distribution

    The outgoing EP message to the backward argument.

    Type Parameters
    Name Description
    Distribution

    The type of the distribution over the damped variable.

    Remarks

    The outgoing message is a distribution matching the moments of backward as the random arguments are varied. The formula is proj[p(backward) sum_(value) p(value) factor(backward,value,stepsize)]/p(backward).

    BackwardAverageLogarithm<Distribution>(Distribution)

    VMP message to backward.

    Declaration
    public static Distribution BackwardAverageLogarithm<Distribution>(Distribution value)
    Parameters
    Type Name Description
    Distribution value

    Incoming message from value.

    Returns
    Type Description
    Distribution

    The outgoing VMP message to the backward argument.

    Type Parameters
    Name Description
    Distribution

    The type of the distribution over the damped variable.

    Remarks

    The outgoing message is a distribution matching the moments of backward as the random arguments are varied. The formula is proj[sum_(value) p(value) factor(backward,value,stepsize)].

    LogEvidenceRatio()

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio()
    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(backward,value,stepsize)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    ValueAverageConditional<Distribution>(Distribution, Double, Distribution)

    EP message to value.

    Declaration
    public static Distribution ValueAverageConditional<Distribution>(Distribution backward, double stepsize, Distribution to_value)
        where Distribution : SettableToPower<Distribution>, SettableToProduct<Distribution>
    Parameters
    Type Name Description
    Distribution backward

    Incoming message from backward. Must be a proper distribution. If uniform, the result will be uniform.

    Double stepsize

    Constant value for stepsize.

    Distribution to_value

    Previous outgoing message to value.

    Returns
    Type Description
    Distribution

    The outgoing EP message to the value argument.

    Type Parameters
    Name Description
    Distribution

    The type of the distribution over the damped variable.

    Remarks

    The outgoing message is a distribution matching the moments of value as the random arguments are varied. The formula is proj[p(value) sum_(backward) p(backward) factor(backward,value,stepsize)]/p(value).

    Exceptions
    Type Condition
    ImproperMessageException

    backward is not a proper distribution.

    ValueAverageLogarithm<Distribution>(Distribution, Double, Distribution)

    VMP message to value.

    Declaration
    public static Distribution ValueAverageLogarithm<Distribution>(Distribution backward, double stepsize, Distribution to_value)
        where Distribution : SettableToPower<Distribution>, SettableToProduct<Distribution>
    Parameters
    Type Name Description
    Distribution backward

    Incoming message from backward. Must be a proper distribution. If uniform, the result will be uniform.

    Double stepsize

    Constant value for stepsize.

    Distribution to_value

    Previous outgoing message to value.

    Returns
    Type Description
    Distribution

    The outgoing VMP message to the value argument.

    Type Parameters
    Name Description
    Distribution

    The type of the distribution over the damped variable.

    Remarks

    The outgoing message is the factor viewed as a function of value with backward integrated out. The formula is sum_backward p(backward) factor(backward,value,stepsize).

    Exceptions
    Type Condition
    ImproperMessageException

    backward is not a proper distribution.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.