Search Results for

    Show / Hide Table of Contents

    Class ConstrainEqualOp<T>

    Provides outgoing messages for Equal<T>(T, T), given random arguments to the function.

    Inheritance
    Object
    ConstrainEqualOp<T>
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Constrain), "Equal<>", new Type[]{})]
    [Quality(QualityBand.Mature)]
    public static class ConstrainEqualOp<T>
    Type Parameters
    Name Description
    T

    The type of the constrained variables.

    Methods

    AAverageConditional<TDistribution>(TDistribution, TDistribution)

    EP message to A.

    Declaration
    public static TDistribution AAverageConditional<TDistribution>(TDistribution B, TDistribution result)
        where TDistribution : SettableTo<TDistribution>
    Parameters
    Type Name Description
    TDistribution B

    Incoming message from B.

    TDistribution result

    Modified to contain the outgoing message.

    Returns
    Type Description
    TDistribution

    result

    Type Parameters
    Name Description
    TDistribution

    The distribution over the constrained variables.

    Remarks

    The outgoing message is a distribution matching the moments of A as the random arguments are varied. The formula is proj[p(A) sum_(B) p(B) factor(A,B)]/p(A).

    AAverageConditional<TDistribution>(T, TDistribution)

    EP message to A.

    Declaration
    public static TDistribution AAverageConditional<TDistribution>(T B, TDistribution result)
        where TDistribution : HasPoint<T>
    Parameters
    Type Name Description
    T B

    Incoming message from B.

    TDistribution result

    Modified to contain the outgoing message.

    Returns
    Type Description
    TDistribution

    result

    Type Parameters
    Name Description
    TDistribution

    The distribution over the constrained variables.

    Remarks

    The outgoing message is a distribution matching the moments of A as the random arguments are varied. The formula is proj[p(A) sum_(B) p(B) factor(A,B)]/p(A).

    AAverageLogarithm<TDistribution>(TDistribution, TDistribution)

    VMP message to A.

    Declaration
    [NotSupported("VMP does not support Constrain.Equal between random variables")]
    public static TDistribution AAverageLogarithm<TDistribution>(TDistribution B, TDistribution result)
    Parameters
    Type Name Description
    TDistribution B

    Incoming message from B.

    TDistribution result

    Modified to contain the outgoing message.

    Returns
    Type Description
    TDistribution

    result

    Type Parameters
    Name Description
    TDistribution

    The distribution over the constrained variables.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except A. The formula is exp(sum_(B) p(B) log(factor(A,B))).

    AAverageLogarithm<TDistribution>(T, TDistribution)

    VMP message to A.

    Declaration
    public static TDistribution AAverageLogarithm<TDistribution>(T B, TDistribution result)
        where TDistribution : HasPoint<T>
    Parameters
    Type Name Description
    T B

    Incoming message from B.

    TDistribution result

    Modified to contain the outgoing message.

    Returns
    Type Description
    TDistribution

    result

    Type Parameters
    Name Description
    TDistribution

    The distribution over the constrained variables.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except A. The formula is exp(sum_(B) p(B) log(factor(A,B))).

    AMaxConditional<TDistribution>(TDistribution, TDistribution)

    Declaration
    public static TDistribution AMaxConditional<TDistribution>(TDistribution B, TDistribution result)
        where TDistribution : SettableTo<TDistribution>
    Parameters
    Type Name Description
    TDistribution B

    Incoming message from B.

    TDistribution result

    Modified to contain the outgoing message.

    Returns
    Type Description
    TDistribution

    result

    Type Parameters
    Name Description
    TDistribution

    The distribution over the constrained variables.

    Remarks

    AverageLogFactor()

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor()
    Returns
    Type Description
    Double

    Zero.

    Remarks

    The formula for the result is log(factor(A,B)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    BAverageConditional<TDistribution>(TDistribution, TDistribution)

    EP message to B.

    Declaration
    public static TDistribution BAverageConditional<TDistribution>(TDistribution A, TDistribution result)
        where TDistribution : SettableTo<TDistribution>
    Parameters
    Type Name Description
    TDistribution A

    Incoming message from A.

    TDistribution result

    Modified to contain the outgoing message.

    Returns
    Type Description
    TDistribution

    result

    Type Parameters
    Name Description
    TDistribution

    The distribution over the constrained variables.

    Remarks

    The outgoing message is a distribution matching the moments of B as the random arguments are varied. The formula is proj[p(B) sum_(A) p(A) factor(A,B)]/p(B).

    BAverageConditional<TDistribution>(T, TDistribution)

    EP message to B.

    Declaration
    public static TDistribution BAverageConditional<TDistribution>(T A, TDistribution result)
        where TDistribution : HasPoint<T>
    Parameters
    Type Name Description
    T A

    Incoming message from A.

    TDistribution result

    Modified to contain the outgoing message.

    Returns
    Type Description
    TDistribution

    result

    Type Parameters
    Name Description
    TDistribution

    The distribution over the constrained variables.

    Remarks

    The outgoing message is a distribution matching the moments of B as the random arguments are varied. The formula is proj[p(B) sum_(A) p(A) factor(A,B)]/p(B).

    BAverageLogarithm<TDistribution>(TDistribution, TDistribution)

    VMP message to B.

    Declaration
    [NotSupported("VMP does not support Constrain.Equal between random variables")]
    public static TDistribution BAverageLogarithm<TDistribution>(TDistribution A, TDistribution result)
    Parameters
    Type Name Description
    TDistribution A

    Incoming message from A.

    TDistribution result

    Modified to contain the outgoing message.

    Returns
    Type Description
    TDistribution

    result

    Type Parameters
    Name Description
    TDistribution

    The distribution over the constrained variables.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except B. The formula is exp(sum_(A) p(A) log(factor(A,B))).

    BAverageLogarithm<TDistribution>(T, TDistribution)

    VMP message to B.

    Declaration
    public static TDistribution BAverageLogarithm<TDistribution>(T A, TDistribution result)
        where TDistribution : HasPoint<T>
    Parameters
    Type Name Description
    T A

    Incoming message from A.

    TDistribution result

    Modified to contain the outgoing message.

    Returns
    Type Description
    TDistribution

    result

    Type Parameters
    Name Description
    TDistribution

    The distribution over the constrained variables.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except B. The formula is exp(sum_(A) p(A) log(factor(A,B))).

    BMaxConditional<TDistribution>(TDistribution, TDistribution)

    Declaration
    public static TDistribution BMaxConditional<TDistribution>(TDistribution A, TDistribution result)
        where TDistribution : SettableTo<TDistribution>
    Parameters
    Type Name Description
    TDistribution A

    Incoming message from A.

    TDistribution result

    Modified to contain the outgoing message.

    Returns
    Type Description
    TDistribution

    result

    Type Parameters
    Name Description
    TDistribution

    The distribution over the constrained variables.

    Remarks

    LogAverageFactor(T, T)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(T a, T b)
    Parameters
    Type Name Description
    T a

    Incoming message from A.

    T b

    Incoming message from B.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(A,B) p(A,B) factor(A,B)).

    LogAverageFactor<TDistribution>(TDistribution, TDistribution)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor<TDistribution>(TDistribution a, TDistribution b)
        where TDistribution : CanGetLogAverageOf<TDistribution>
    Parameters
    Type Name Description
    TDistribution a

    Incoming message from A.

    TDistribution b

    Incoming message from B.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Type Parameters
    Name Description
    TDistribution

    The distribution over the constrained variables.

    Remarks

    The formula for the result is log(sum_(A,B) p(A,B) factor(A,B)).

    LogAverageFactor<TDistribution>(TDistribution, T)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor<TDistribution>(TDistribution a, T b)
        where TDistribution : CanGetLogProb<T>
    Parameters
    Type Name Description
    TDistribution a

    Incoming message from A.

    T b

    Incoming message from B.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Type Parameters
    Name Description
    TDistribution

    The distribution over the constrained variables.

    Remarks

    The formula for the result is log(sum_(A,B) p(A,B) factor(A,B)).

    LogAverageFactor<TDistribution>(T, TDistribution)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor<TDistribution>(T a, TDistribution b)
        where TDistribution : CanGetLogProb<T>
    Parameters
    Type Name Description
    T a

    Incoming message from A.

    TDistribution b

    Incoming message from B.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Type Parameters
    Name Description
    TDistribution

    The distribution over the constrained variables.

    Remarks

    The formula for the result is log(sum_(A,B) p(A,B) factor(A,B)).

    LogEvidenceRatio(T, T)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(T a, T b)
    Parameters
    Type Name Description
    T a

    Incoming message from A.

    T b

    Incoming message from B.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(A,B) p(A,B) factor(A,B)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio<TDistribution>(TDistribution, TDistribution)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio<TDistribution>(TDistribution a, TDistribution b)
        where TDistribution : CanGetLogAverageOf<TDistribution>
    Parameters
    Type Name Description
    TDistribution a

    Incoming message from A.

    TDistribution b

    Incoming message from B.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Type Parameters
    Name Description
    TDistribution

    The distribution over the constrained variables.

    Remarks

    The formula for the result is log(sum_(A,B) p(A,B) factor(A,B)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio<TDistribution>(TDistribution, T)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio<TDistribution>(TDistribution a, T b)
        where TDistribution : CanGetLogProb<T>
    Parameters
    Type Name Description
    TDistribution a

    Incoming message from A.

    T b

    Incoming message from B.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Type Parameters
    Name Description
    TDistribution

    The distribution over the constrained variables.

    Remarks

    The formula for the result is log(sum_(A,B) p(A,B) factor(A,B)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio<TDistribution>(T, TDistribution)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio<TDistribution>(T a, TDistribution b)
        where TDistribution : CanGetLogProb<T>
    Parameters
    Type Name Description
    T a

    Incoming message from A.

    TDistribution b

    Incoming message from B.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Type Parameters
    Name Description
    TDistribution

    The distribution over the constrained variables.

    Remarks

    The formula for the result is log(sum_(A,B) p(A,B) factor(A,B)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.