Search Results for

    Show / Hide Table of Contents

    Class ConcatOp

    Provides outgoing messages for Concat(Vector, Vector), given random arguments to the function.

    Inheritance
    Object
    ConcatOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Vector), "Concat", new Type[]{typeof(Vector), typeof(Vector)})]
    [Quality(QualityBand.Stable)]
    public static class ConcatOp

    Methods

    AverageLogFactor()

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor()
    Returns
    Type Description
    Double

    Zero.

    Remarks

    The formula for the result is log(factor(concat,first,second)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    ConcatAverageConditional(VectorGaussian, VectorGaussian, VectorGaussian)

    EP message to concat.

    Declaration
    [SkipIfAllUniform]
    public static VectorGaussian ConcatAverageConditional(VectorGaussian first, VectorGaussian second, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian first

    Incoming message from first.

    VectorGaussian second

    Incoming message from second.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of concat as the random arguments are varied. The formula is proj[p(concat) sum_(first,second) p(first,second) factor(concat,first,second)]/p(concat).

    ConcatAverageConditional(VectorGaussian, Vector, VectorGaussian)

    EP message to concat.

    Declaration
    public static VectorGaussian ConcatAverageConditional(VectorGaussian first, Vector second, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian first

    Incoming message from first.

    Vector second

    Constant value for second.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of concat as the random arguments are varied. The formula is proj[p(concat) sum_(first) p(first) factor(concat,first,second)]/p(concat).

    ConcatAverageConditional(Vector, VectorGaussian, VectorGaussian)

    EP message to concat.

    Declaration
    public static VectorGaussian ConcatAverageConditional(Vector first, VectorGaussian second, VectorGaussian result)
    Parameters
    Type Name Description
    Vector first

    Constant value for first.

    VectorGaussian second

    Incoming message from second.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of concat as the random arguments are varied. The formula is proj[p(concat) sum_(second) p(second) factor(concat,first,second)]/p(concat).

    ConcatAverageConditionalInit(VectorGaussian, VectorGaussian)

    Declaration
    public static VectorGaussian ConcatAverageConditionalInit(VectorGaussian first, VectorGaussian second)
    Parameters
    Type Name Description
    VectorGaussian first

    Incoming message from first.

    VectorGaussian second

    Incoming message from second.

    Returns
    Type Description
    VectorGaussian
    Remarks

    ConcatAverageConditionalInit(VectorGaussian, Vector)

    Declaration
    public static VectorGaussian ConcatAverageConditionalInit(VectorGaussian first, Vector second)
    Parameters
    Type Name Description
    VectorGaussian first

    Incoming message from first.

    Vector second

    Constant value for second.

    Returns
    Type Description
    VectorGaussian
    Remarks

    ConcatAverageConditionalInit(Vector, VectorGaussian)

    Declaration
    public static VectorGaussian ConcatAverageConditionalInit(Vector first, VectorGaussian second)
    Parameters
    Type Name Description
    Vector first

    Constant value for first.

    VectorGaussian second

    Incoming message from second.

    Returns
    Type Description
    VectorGaussian
    Remarks

    ConcatAverageLogarithm(VectorGaussian, VectorGaussian, VectorGaussian)

    VMP message to concat.

    Declaration
    [SkipIfAllUniform]
    public static VectorGaussian ConcatAverageLogarithm(VectorGaussian first, VectorGaussian second, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian first

    Incoming message from first.

    VectorGaussian second

    Incoming message from second.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of concat as the random arguments are varied. The formula is proj[sum_(first,second) p(first,second) factor(concat,first,second)].

    ConcatAverageLogarithm(VectorGaussian, Vector, VectorGaussian)

    VMP message to concat.

    Declaration
    public static VectorGaussian ConcatAverageLogarithm(VectorGaussian first, Vector second, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian first

    Incoming message from first.

    Vector second

    Constant value for second.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of concat as the random arguments are varied. The formula is proj[sum_(first) p(first) factor(concat,first,second)].

    ConcatAverageLogarithm(Vector, VectorGaussian, VectorGaussian)

    VMP message to concat.

    Declaration
    public static VectorGaussian ConcatAverageLogarithm(Vector first, VectorGaussian second, VectorGaussian result)
    Parameters
    Type Name Description
    Vector first

    Constant value for first.

    VectorGaussian second

    Incoming message from second.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of concat as the random arguments are varied. The formula is proj[sum_(second) p(second) factor(concat,first,second)].

    ConcatAverageLogarithmInit(VectorGaussian, VectorGaussian)

    Declaration
    public static VectorGaussian ConcatAverageLogarithmInit(VectorGaussian first, VectorGaussian second)
    Parameters
    Type Name Description
    VectorGaussian first

    Incoming message from first.

    VectorGaussian second

    Incoming message from second.

    Returns
    Type Description
    VectorGaussian
    Remarks

    ConcatAverageLogarithmInit(VectorGaussian, Vector)

    Declaration
    public static VectorGaussian ConcatAverageLogarithmInit(VectorGaussian first, Vector second)
    Parameters
    Type Name Description
    VectorGaussian first

    Incoming message from first.

    Vector second

    Constant value for second.

    Returns
    Type Description
    VectorGaussian
    Remarks

    ConcatAverageLogarithmInit(Vector, VectorGaussian)

    Declaration
    public static VectorGaussian ConcatAverageLogarithmInit(Vector first, VectorGaussian second)
    Parameters
    Type Name Description
    Vector first

    Constant value for first.

    VectorGaussian second

    Incoming message from second.

    Returns
    Type Description
    VectorGaussian
    Remarks

    FirstAverageConditional(VectorGaussian, VectorGaussian, VectorGaussian)

    EP message to first.

    Declaration
    public static VectorGaussian FirstAverageConditional(VectorGaussian concat, VectorGaussian second, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian concat

    Incoming message from concat. Must be a proper distribution. If any element is uniform, the result will be uniform.

    VectorGaussian second

    Incoming message from second.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of first as the random arguments are varied. The formula is proj[p(first) sum_(concat,second) p(concat,second) factor(concat,first,second)]/p(first).

    Exceptions
    Type Condition
    ImproperMessageException

    concat is not a proper distribution.

    FirstAverageConditional(VectorGaussian, Vector, VectorGaussian)

    EP message to first.

    Declaration
    public static VectorGaussian FirstAverageConditional(VectorGaussian concat, Vector second, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian concat

    Incoming message from concat. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector second

    Constant value for second.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of first as the random arguments are varied. The formula is proj[p(first) sum_(concat) p(concat) factor(concat,first,second)]/p(first).

    Exceptions
    Type Condition
    ImproperMessageException

    concat is not a proper distribution.

    FirstAverageConditional(Vector, VectorGaussian)

    EP message to first.

    Declaration
    public static VectorGaussian FirstAverageConditional(Vector concat, VectorGaussian result)
    Parameters
    Type Name Description
    Vector concat

    Constant value for concat.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of first conditioned on the given values.

    FirstAverageLogarithm(VectorGaussian, VectorGaussian, VectorGaussian)

    VMP message to first.

    Declaration
    public static VectorGaussian FirstAverageLogarithm(VectorGaussian concat, VectorGaussian second, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian concat

    Incoming message from concat. Must be a proper distribution. If any element is uniform, the result will be uniform.

    VectorGaussian second

    Incoming message from second.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except first. Because the factor is deterministic, concat is integrated out before taking the logarithm. The formula is exp(sum_(second) p(second) log(sum_concat p(concat) factor(concat,first,second))).

    Exceptions
    Type Condition
    ImproperMessageException

    concat is not a proper distribution.

    FirstAverageLogarithm(VectorGaussian, Vector, VectorGaussian)

    VMP message to first.

    Declaration
    public static VectorGaussian FirstAverageLogarithm(VectorGaussian concat, Vector second, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian concat

    Incoming message from concat. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector second

    Constant value for second.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of first with concat integrated out. The formula is sum_concat p(concat) factor(concat,first,second).

    Exceptions
    Type Condition
    ImproperMessageException

    concat is not a proper distribution.

    FirstAverageLogarithm(Vector, VectorGaussian)

    VMP message to first.

    Declaration
    public static VectorGaussian FirstAverageLogarithm(Vector concat, VectorGaussian result)
    Parameters
    Type Name Description
    Vector concat

    Constant value for concat.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of first conditioned on the given values.

    LogAverageFactor(VectorGaussian, VectorGaussian)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(VectorGaussian concat, VectorGaussian to_concat)
    Parameters
    Type Name Description
    VectorGaussian concat

    Incoming message from concat.

    VectorGaussian to_concat

    Outgoing message to concat.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(concat) p(concat) factor(concat,first,second)).

    LogAverageFactor(VectorGaussian, Vector, Vector)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(VectorGaussian concat, Vector first, Vector second)
    Parameters
    Type Name Description
    VectorGaussian concat

    Incoming message from concat.

    Vector first

    Constant value for first.

    Vector second

    Constant value for second.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(concat) p(concat) factor(concat,first,second)).

    LogAverageFactor(Vector, VectorGaussian, VectorGaussian)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Vector concat, VectorGaussian first, VectorGaussian second)
    Parameters
    Type Name Description
    Vector concat

    Constant value for concat.

    VectorGaussian first

    Incoming message from first.

    VectorGaussian second

    Incoming message from second.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(first,second) p(first,second) factor(concat,first,second)).

    LogAverageFactor(Vector, VectorGaussian, Vector)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Vector concat, VectorGaussian first, Vector second)
    Parameters
    Type Name Description
    Vector concat

    Constant value for concat.

    VectorGaussian first

    Incoming message from first.

    Vector second

    Constant value for second.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(first) p(first) factor(concat,first,second)).

    LogAverageFactor(Vector, Vector, VectorGaussian)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Vector concat, Vector first, VectorGaussian second)
    Parameters
    Type Name Description
    Vector concat

    Constant value for concat.

    Vector first

    Constant value for first.

    VectorGaussian second

    Incoming message from second.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(second) p(second) factor(concat,first,second)).

    LogAverageFactor(Vector, Vector, Vector)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Vector concat, Vector first, Vector second)
    Parameters
    Type Name Description
    Vector concat

    Constant value for concat.

    Vector first

    Constant value for first.

    Vector second

    Constant value for second.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(concat,first,second)).

    LogEvidenceRatio(VectorGaussian)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(VectorGaussian concat)
    Parameters
    Type Name Description
    VectorGaussian concat

    Incoming message from concat.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(concat) p(concat) factor(concat,first,second) / sum_concat p(concat) messageTo(concat)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Vector, VectorGaussian, VectorGaussian)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Vector concat, VectorGaussian first, VectorGaussian second)
    Parameters
    Type Name Description
    Vector concat

    Constant value for concat.

    VectorGaussian first

    Incoming message from first.

    VectorGaussian second

    Incoming message from second.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(first,second) p(first,second) factor(concat,first,second)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Vector, VectorGaussian, Vector)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Vector concat, VectorGaussian first, Vector second)
    Parameters
    Type Name Description
    Vector concat

    Constant value for concat.

    VectorGaussian first

    Incoming message from first.

    Vector second

    Constant value for second.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(first) p(first) factor(concat,first,second)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Vector, Vector, VectorGaussian)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Vector concat, Vector first, VectorGaussian second)
    Parameters
    Type Name Description
    Vector concat

    Constant value for concat.

    Vector first

    Constant value for first.

    VectorGaussian second

    Incoming message from second.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(second) p(second) factor(concat,first,second)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Vector, Vector, Vector)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Vector concat, Vector first, Vector second)
    Parameters
    Type Name Description
    Vector concat

    Constant value for concat.

    Vector first

    Constant value for first.

    Vector second

    Constant value for second.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(concat,first,second)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    SecondAverageConditional(VectorGaussian, VectorGaussian, VectorGaussian)

    EP message to second.

    Declaration
    public static VectorGaussian SecondAverageConditional(VectorGaussian concat, VectorGaussian first, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian concat

    Incoming message from concat. Must be a proper distribution. If any element is uniform, the result will be uniform.

    VectorGaussian first

    Incoming message from first.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of second as the random arguments are varied. The formula is proj[p(second) sum_(concat,first) p(concat,first) factor(concat,first,second)]/p(second).

    Exceptions
    Type Condition
    ImproperMessageException

    concat is not a proper distribution.

    SecondAverageConditional(VectorGaussian, Vector, VectorGaussian)

    EP message to second.

    Declaration
    public static VectorGaussian SecondAverageConditional(VectorGaussian concat, Vector first, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian concat

    Incoming message from concat. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector first

    Constant value for first.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of second as the random arguments are varied. The formula is proj[p(second) sum_(concat) p(concat) factor(concat,first,second)]/p(second).

    Exceptions
    Type Condition
    ImproperMessageException

    concat is not a proper distribution.

    SecondAverageConditional(Vector, VectorGaussian, VectorGaussian)

    EP message to second.

    Declaration
    public static VectorGaussian SecondAverageConditional(Vector concat, VectorGaussian first, VectorGaussian result)
    Parameters
    Type Name Description
    Vector concat

    Constant value for concat.

    VectorGaussian first

    Incoming message from first.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of second as the random arguments are varied. The formula is proj[p(second) sum_(first) p(first) factor(concat,first,second)]/p(second).

    SecondAverageConditional(Vector, Vector, VectorGaussian)

    EP message to second.

    Declaration
    public static VectorGaussian SecondAverageConditional(Vector concat, Vector first, VectorGaussian result)
    Parameters
    Type Name Description
    Vector concat

    Constant value for concat.

    Vector first

    Constant value for first.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of second conditioned on the given values.

    SecondAverageLogarithm(VectorGaussian, VectorGaussian, VectorGaussian)

    VMP message to second.

    Declaration
    public static VectorGaussian SecondAverageLogarithm(VectorGaussian concat, VectorGaussian first, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian concat

    Incoming message from concat. Must be a proper distribution. If any element is uniform, the result will be uniform.

    VectorGaussian first

    Incoming message from first.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except second. Because the factor is deterministic, concat is integrated out before taking the logarithm. The formula is exp(sum_(first) p(first) log(sum_concat p(concat) factor(concat,first,second))).

    Exceptions
    Type Condition
    ImproperMessageException

    concat is not a proper distribution.

    SecondAverageLogarithm(VectorGaussian, Vector, VectorGaussian)

    VMP message to second.

    Declaration
    public static VectorGaussian SecondAverageLogarithm(VectorGaussian concat, Vector first, VectorGaussian result)
    Parameters
    Type Name Description
    VectorGaussian concat

    Incoming message from concat. Must be a proper distribution. If any element is uniform, the result will be uniform.

    Vector first

    Constant value for first.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of second with concat integrated out. The formula is sum_concat p(concat) factor(concat,first,second).

    Exceptions
    Type Condition
    ImproperMessageException

    concat is not a proper distribution.

    SecondAverageLogarithm(Vector, VectorGaussian, VectorGaussian)

    VMP message to second.

    Declaration
    public static VectorGaussian SecondAverageLogarithm(Vector concat, VectorGaussian first, VectorGaussian result)
    Parameters
    Type Name Description
    Vector concat

    Constant value for concat.

    VectorGaussian first

    Incoming message from first.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except second. The formula is exp(sum_(first) p(first) log(factor(concat,first,second))).

    SecondAverageLogarithm(Vector, Vector, VectorGaussian)

    VMP message to second.

    Declaration
    public static VectorGaussian SecondAverageLogarithm(Vector concat, Vector first, VectorGaussian result)
    Parameters
    Type Name Description
    Vector concat

    Constant value for concat.

    Vector first

    Constant value for first.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of second conditioned on the given values.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.