Search Results for

    Show / Hide Table of Contents

    Class CasesBoolOp

    Provides outgoing messages for CasesBool(Boolean, out Boolean, out Boolean), given random arguments to the function.

    Inheritance
    Object
    CasesBoolOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Gate), "CasesBool", new Type[]{typeof(bool), typeof(bool), typeof(bool)})]
    [Quality(QualityBand.Experimental)]
    public static class CasesBoolOp

    Methods

    AverageLogFactor(Bernoulli, Bernoulli, Bernoulli)

    Evidence message for VMP.

    Declaration
    [SkipIfAllUniform(new string[]{"case0", "case1"})]
    public static double AverageLogFactor(Bernoulli case0, Bernoulli case1, Bernoulli b)
    Parameters
    Type Name Description
    Bernoulli case0

    Incoming message from case0.

    Bernoulli case1

    Incoming message from case1.

    Bernoulli b

    Incoming message from b.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    BAverageConditional(Bernoulli, Bernoulli)

    EP message to b.

    Declaration
    [SkipIfAllUniform]
    public static Bernoulli BAverageConditional(Bernoulli case0, Bernoulli case1)
    Parameters
    Type Name Description
    Bernoulli case0

    Incoming message from case0.

    Bernoulli case1

    Incoming message from case1.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(case0,case1) p(case0,case1) factor(b,case0,case1)]/p(b).

    BAverageLogarithm(Bernoulli, Bernoulli)

    VMP message to b.

    Declaration
    [SkipIfAllUniform]
    public static Bernoulli BAverageLogarithm(Bernoulli case0, Bernoulli case1)
    Parameters
    Type Name Description
    Bernoulli case0

    Incoming message from case0.

    Bernoulli case1

    Incoming message from case1.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the b argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b. The formula is exp(sum_(case0,case1) p(case0,case1) log(factor(b,case0,case1))).

    Case0AverageConditional(Bernoulli)

    EP message to case0.

    Declaration
    public static Bernoulli Case0AverageConditional(Bernoulli b)
    Parameters
    Type Name Description
    Bernoulli b

    Incoming message from b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the case0 argument.

    Remarks

    The outgoing message is a distribution matching the moments of case0 as the random arguments are varied. The formula is proj[p(case0) sum_(b) p(b) factor(b,case0,case1)]/p(case0).

    Case0AverageLogarithm(Bernoulli)

    VMP message to case0.

    Declaration
    public static Bernoulli Case0AverageLogarithm(Bernoulli b)
    Parameters
    Type Name Description
    Bernoulli b

    Incoming message from b.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the case0 argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except case0. The formula is exp(sum_(b) p(b) log(factor(b,case0,case1))).

    Case1AverageConditional(Bernoulli)

    EP message to case1.

    Declaration
    public static Bernoulli Case1AverageConditional(Bernoulli b)
    Parameters
    Type Name Description
    Bernoulli b

    Incoming message from b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the case1 argument.

    Remarks

    The outgoing message is a distribution matching the moments of case1 as the random arguments are varied. The formula is proj[p(case1) sum_(b) p(b) factor(b,case0,case1)]/p(case1).

    Case1AverageLogarithm(Bernoulli)

    VMP message to case1.

    Declaration
    public static Bernoulli Case1AverageLogarithm(Bernoulli b)
    Parameters
    Type Name Description
    Bernoulli b

    Incoming message from b.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the case1 argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except case1. The formula is exp(sum_(b) p(b) log(factor(b,case0,case1))).

    LogEvidenceRatio(Bernoulli, Bernoulli, Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Bernoulli case0, Bernoulli case1, Bernoulli b)
    Parameters
    Type Name Description
    Bernoulli case0

    Incoming message from case0.

    Bernoulli case1

    Incoming message from case1.

    Bernoulli b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(case0,case1,b) p(case0,case1,b) factor(b,case0,case1)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.