Search Results for

    Show / Hide Table of Contents

    Class BooleanAreEqualOp

    Provides outgoing messages for AreEqual(Boolean, Boolean), given random arguments to the function.

    Inheritance
    Object
    BooleanAreEqualOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Factor), "AreEqual", new Type[]{typeof(bool), typeof(bool)})]
    [Quality(QualityBand.Mature)]
    public static class BooleanAreEqualOp
    Remarks

    This factor is symmetric among all three arguments.

    Methods

    AAverageConditional(Bernoulli, Bernoulli)

    EP message to a.

    Declaration
    public static Bernoulli AAverageConditional(Bernoulli areEqual, Bernoulli B)
    Parameters
    Type Name Description
    Bernoulli areEqual

    Incoming message from areEqual. Must be a proper distribution. If uniform, the result will be uniform.

    Bernoulli B

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(areEqual,b) p(areEqual,b) factor(areEqual,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    areEqual is not a proper distribution.

    ImproperMessageException

    B is not a proper distribution.

    AAverageConditional(Bernoulli, Boolean)

    EP message to a.

    Declaration
    public static Bernoulli AAverageConditional(Bernoulli areEqual, bool B)
    Parameters
    Type Name Description
    Bernoulli areEqual

    Incoming message from areEqual. Must be a proper distribution. If uniform, the result will be uniform.

    Boolean B

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(areEqual) p(areEqual) factor(areEqual,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    areEqual is not a proper distribution.

    AAverageConditional(Boolean, Bernoulli)

    EP message to a.

    Declaration
    public static Bernoulli AAverageConditional(bool areEqual, Bernoulli B)
    Parameters
    Type Name Description
    Boolean areEqual

    Constant value for areEqual.

    Bernoulli B

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(b) p(b) factor(areEqual,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    B is not a proper distribution.

    AAverageConditional(Boolean, Boolean)

    EP message to a.

    Declaration
    public static Bernoulli AAverageConditional(bool areEqual, bool B)
    Parameters
    Type Name Description
    Boolean areEqual

    Constant value for areEqual.

    Boolean B

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is the factor viewed as a function of a conditioned on the given values.

    AAverageLogarithm(Bernoulli, Bernoulli)

    VMP message to a.

    Declaration
    public static Bernoulli AAverageLogarithm(Bernoulli areEqual, Bernoulli B)
    Parameters
    Type Name Description
    Bernoulli areEqual

    Incoming message from areEqual. Must be a proper distribution. If uniform, the result will be uniform.

    Bernoulli B

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the a argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a. Because the factor is deterministic, areEqual is integrated out before taking the logarithm. The formula is exp(sum_(b) p(b) log(sum_areEqual p(areEqual) factor(areEqual,a,b))).

    Exceptions
    Type Condition
    ImproperMessageException

    areEqual is not a proper distribution.

    ImproperMessageException

    B is not a proper distribution.

    AAverageLogarithm(Bernoulli, Boolean)

    VMP message to a.

    Declaration
    public static Bernoulli AAverageLogarithm(Bernoulli areEqual, bool B)
    Parameters
    Type Name Description
    Bernoulli areEqual

    Incoming message from areEqual. Must be a proper distribution. If uniform, the result will be uniform.

    Boolean B

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the a argument.

    Remarks

    The outgoing message is the factor viewed as a function of a with areEqual integrated out. The formula is sum_areEqual p(areEqual) factor(areEqual,a,b).

    Exceptions
    Type Condition
    ImproperMessageException

    areEqual is not a proper distribution.

    AAverageLogarithm(Boolean, Bernoulli)

    VMP message to a.

    Declaration
    [NotSupported("Variational Message Passing does not support an AreEqual factor with fixed output.")]
    public static Bernoulli AAverageLogarithm(bool areEqual, Bernoulli B)
    Parameters
    Type Name Description
    Boolean areEqual

    Constant value for areEqual.

    Bernoulli B

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the a argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a. The formula is exp(sum_(b) p(b) log(factor(areEqual,a,b))).

    Exceptions
    Type Condition
    ImproperMessageException

    B is not a proper distribution.

    AAverageLogarithm(Boolean, Boolean)

    VMP message to a.

    Declaration
    public static Bernoulli AAverageLogarithm(bool areEqual, bool B)
    Parameters
    Type Name Description
    Boolean areEqual

    Constant value for areEqual.

    Boolean B

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the a argument.

    Remarks

    The outgoing message is the factor viewed as a function of a conditioned on the given values.

    AreEqualAverageConditional(Bernoulli, Bernoulli)

    EP message to areEqual.

    Declaration
    public static Bernoulli AreEqualAverageConditional(Bernoulli A, Bernoulli B)
    Parameters
    Type Name Description
    Bernoulli A

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Bernoulli B

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the areEqual argument.

    Remarks

    The outgoing message is a distribution matching the moments of areEqual as the random arguments are varied. The formula is proj[p(areEqual) sum_(a,b) p(a,b) factor(areEqual,a,b)]/p(areEqual).

    Exceptions
    Type Condition
    ImproperMessageException

    A is not a proper distribution.

    ImproperMessageException

    B is not a proper distribution.

    AreEqualAverageConditional(Bernoulli, Boolean)

    EP message to areEqual.

    Declaration
    public static Bernoulli AreEqualAverageConditional(Bernoulli A, bool B)
    Parameters
    Type Name Description
    Bernoulli A

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Boolean B

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the areEqual argument.

    Remarks

    The outgoing message is a distribution matching the moments of areEqual as the random arguments are varied. The formula is proj[p(areEqual) sum_(a) p(a) factor(areEqual,a,b)]/p(areEqual).

    Exceptions
    Type Condition
    ImproperMessageException

    A is not a proper distribution.

    AreEqualAverageConditional(Boolean, Bernoulli)

    EP message to areEqual.

    Declaration
    public static Bernoulli AreEqualAverageConditional(bool A, Bernoulli B)
    Parameters
    Type Name Description
    Boolean A

    Constant value for a.

    Bernoulli B

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the areEqual argument.

    Remarks

    The outgoing message is a distribution matching the moments of areEqual as the random arguments are varied. The formula is proj[p(areEqual) sum_(b) p(b) factor(areEqual,a,b)]/p(areEqual).

    Exceptions
    Type Condition
    ImproperMessageException

    B is not a proper distribution.

    AreEqualAverageConditional(Boolean, Boolean)

    EP message to areEqual.

    Declaration
    public static Bernoulli AreEqualAverageConditional(bool A, bool B)
    Parameters
    Type Name Description
    Boolean A

    Constant value for a.

    Boolean B

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the areEqual argument.

    Remarks

    The outgoing message is the factor viewed as a function of areEqual conditioned on the given values.

    AreEqualAverageLogarithm(Bernoulli, Bernoulli)

    VMP message to areEqual.

    Declaration
    public static Bernoulli AreEqualAverageLogarithm(Bernoulli A, Bernoulli B)
    Parameters
    Type Name Description
    Bernoulli A

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Bernoulli B

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the areEqual argument.

    Remarks

    The outgoing message is a distribution matching the moments of areEqual as the random arguments are varied. The formula is proj[sum_(a,b) p(a,b) factor(areEqual,a,b)].

    Exceptions
    Type Condition
    ImproperMessageException

    A is not a proper distribution.

    ImproperMessageException

    B is not a proper distribution.

    AreEqualAverageLogarithm(Bernoulli, Boolean)

    VMP message to areEqual.

    Declaration
    public static Bernoulli AreEqualAverageLogarithm(Bernoulli A, bool B)
    Parameters
    Type Name Description
    Bernoulli A

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Boolean B

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the areEqual argument.

    Remarks

    The outgoing message is a distribution matching the moments of areEqual as the random arguments are varied. The formula is proj[sum_(a) p(a) factor(areEqual,a,b)].

    Exceptions
    Type Condition
    ImproperMessageException

    A is not a proper distribution.

    AreEqualAverageLogarithm(Boolean, Bernoulli)

    VMP message to areEqual.

    Declaration
    public static Bernoulli AreEqualAverageLogarithm(bool A, Bernoulli B)
    Parameters
    Type Name Description
    Boolean A

    Constant value for a.

    Bernoulli B

    Incoming message from b. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the areEqual argument.

    Remarks

    The outgoing message is a distribution matching the moments of areEqual as the random arguments are varied. The formula is proj[sum_(b) p(b) factor(areEqual,a,b)].

    Exceptions
    Type Condition
    ImproperMessageException

    B is not a proper distribution.

    AreEqualAverageLogarithm(Boolean, Boolean)

    VMP message to areEqual.

    Declaration
    public static Bernoulli AreEqualAverageLogarithm(bool A, bool B)
    Parameters
    Type Name Description
    Boolean A

    Constant value for a.

    Boolean B

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the areEqual argument.

    Remarks

    The outgoing message is the factor viewed as a function of areEqual conditioned on the given values.

    AverageLogFactor()

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor()
    Returns
    Type Description
    Double

    Zero.

    Remarks

    The formula for the result is log(factor(areEqual,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Boolean, Boolean, Boolean)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(bool areEqual, bool a, bool b)
    Parameters
    Type Name Description
    Boolean areEqual

    Constant value for areEqual.

    Boolean a

    Constant value for a.

    Boolean b

    Constant value for b.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    The formula for the result is log(factor(areEqual,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    BAverageConditional(Bernoulli, Bernoulli)

    EP message to b.

    Declaration
    public static Bernoulli BAverageConditional(Bernoulli areEqual, Bernoulli A)
    Parameters
    Type Name Description
    Bernoulli areEqual

    Incoming message from areEqual. Must be a proper distribution. If uniform, the result will be uniform.

    Bernoulli A

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(areEqual,a) p(areEqual,a) factor(areEqual,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    areEqual is not a proper distribution.

    ImproperMessageException

    A is not a proper distribution.

    BAverageConditional(Bernoulli, Boolean)

    EP message to b.

    Declaration
    public static Bernoulli BAverageConditional(Bernoulli areEqual, bool A)
    Parameters
    Type Name Description
    Bernoulli areEqual

    Incoming message from areEqual. Must be a proper distribution. If uniform, the result will be uniform.

    Boolean A

    Constant value for a.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(areEqual) p(areEqual) factor(areEqual,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    areEqual is not a proper distribution.

    BAverageConditional(Boolean, Bernoulli)

    EP message to b.

    Declaration
    public static Bernoulli BAverageConditional(bool areEqual, Bernoulli A)
    Parameters
    Type Name Description
    Boolean areEqual

    Constant value for areEqual.

    Bernoulli A

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(a) p(a) factor(areEqual,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    A is not a proper distribution.

    BAverageConditional(Boolean, Boolean)

    EP message to b.

    Declaration
    public static Bernoulli BAverageConditional(bool areEqual, bool A)
    Parameters
    Type Name Description
    Boolean areEqual

    Constant value for areEqual.

    Boolean A

    Constant value for a.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is the factor viewed as a function of b conditioned on the given values.

    BAverageLogarithm(Bernoulli, Bernoulli)

    VMP message to b.

    Declaration
    public static Bernoulli BAverageLogarithm(Bernoulli areEqual, Bernoulli A)
    Parameters
    Type Name Description
    Bernoulli areEqual

    Incoming message from areEqual. Must be a proper distribution. If uniform, the result will be uniform.

    Bernoulli A

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the b argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b. Because the factor is deterministic, areEqual is integrated out before taking the logarithm. The formula is exp(sum_(a) p(a) log(sum_areEqual p(areEqual) factor(areEqual,a,b))).

    Exceptions
    Type Condition
    ImproperMessageException

    areEqual is not a proper distribution.

    ImproperMessageException

    A is not a proper distribution.

    BAverageLogarithm(Bernoulli, Boolean)

    VMP message to b.

    Declaration
    public static Bernoulli BAverageLogarithm(Bernoulli areEqual, bool A)
    Parameters
    Type Name Description
    Bernoulli areEqual

    Incoming message from areEqual. Must be a proper distribution. If uniform, the result will be uniform.

    Boolean A

    Constant value for a.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the b argument.

    Remarks

    The outgoing message is the factor viewed as a function of b with areEqual integrated out. The formula is sum_areEqual p(areEqual) factor(areEqual,a,b).

    Exceptions
    Type Condition
    ImproperMessageException

    areEqual is not a proper distribution.

    BAverageLogarithm(Boolean, Bernoulli)

    VMP message to b.

    Declaration
    [NotSupported("Variational Message Passing does not support an AreEqual factor with fixed output.")]
    public static Bernoulli BAverageLogarithm(bool areEqual, Bernoulli A)
    Parameters
    Type Name Description
    Boolean areEqual

    Constant value for areEqual.

    Bernoulli A

    Incoming message from a. Must be a proper distribution. If uniform, the result will be uniform.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the b argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b. The formula is exp(sum_(a) p(a) log(factor(areEqual,a,b))).

    Exceptions
    Type Condition
    ImproperMessageException

    A is not a proper distribution.

    BAverageLogarithm(Boolean, Boolean)

    VMP message to b.

    Declaration
    public static Bernoulli BAverageLogarithm(bool areEqual, bool A)
    Parameters
    Type Name Description
    Boolean areEqual

    Constant value for areEqual.

    Boolean A

    Constant value for a.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the b argument.

    Remarks

    The outgoing message is the factor viewed as a function of b conditioned on the given values.

    LogAverageFactor(Bernoulli, Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Bernoulli areEqual, Bernoulli to_areEqual)
    Parameters
    Type Name Description
    Bernoulli areEqual

    Incoming message from areEqual.

    Bernoulli to_areEqual

    Outgoing message to areEqual.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(areEqual) p(areEqual) factor(areEqual,a,b)).

    LogAverageFactor(Bernoulli, Boolean, Boolean)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Bernoulli areEqual, bool a, bool b)
    Parameters
    Type Name Description
    Bernoulli areEqual

    Incoming message from areEqual.

    Boolean a

    Constant value for a.

    Boolean b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(areEqual) p(areEqual) factor(areEqual,a,b)).

    LogAverageFactor(Boolean, Bernoulli, Bernoulli, Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(bool areEqual, Bernoulli A, Bernoulli B, Bernoulli to_A)
    Parameters
    Type Name Description
    Boolean areEqual

    Constant value for areEqual.

    Bernoulli A

    Incoming message from a.

    Bernoulli B

    Incoming message from b.

    Bernoulli to_A

    Outgoing message to A.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(a,b) p(a,b) factor(areEqual,a,b)).

    LogAverageFactor(Boolean, Bernoulli, Boolean, Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(bool areEqual, Bernoulli A, bool B, Bernoulli to_A)
    Parameters
    Type Name Description
    Boolean areEqual

    Constant value for areEqual.

    Bernoulli A

    Incoming message from a.

    Boolean B

    Constant value for b.

    Bernoulli to_A

    Outgoing message to A.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(a) p(a) factor(areEqual,a,b)).

    LogAverageFactor(Boolean, Boolean, Bernoulli, Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(bool areEqual, bool A, Bernoulli B, Bernoulli to_B)
    Parameters
    Type Name Description
    Boolean areEqual

    Constant value for areEqual.

    Boolean A

    Constant value for a.

    Bernoulli B

    Incoming message from b.

    Bernoulli to_B

    Outgoing message to B.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(b) p(b) factor(areEqual,a,b)).

    LogAverageFactor(Boolean, Boolean, Boolean)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(bool areEqual, bool a, bool b)
    Parameters
    Type Name Description
    Boolean areEqual

    Constant value for areEqual.

    Boolean a

    Constant value for a.

    Boolean b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(areEqual,a,b)).

    LogEvidenceRatio(Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Bernoulli areEqual)
    Parameters
    Type Name Description
    Bernoulli areEqual

    Incoming message from areEqual.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(areEqual) p(areEqual) factor(areEqual,a,b) / sum_areEqual p(areEqual) messageTo(areEqual)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Boolean, Bernoulli, Bernoulli, Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(bool areEqual, Bernoulli A, Bernoulli B, Bernoulli to_A)
    Parameters
    Type Name Description
    Boolean areEqual

    Constant value for areEqual.

    Bernoulli A

    Incoming message from a.

    Bernoulli B

    Incoming message from b.

    Bernoulli to_A

    Outgoing message to A.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(a,b) p(a,b) factor(areEqual,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Boolean, Bernoulli, Boolean, Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(bool areEqual, Bernoulli A, bool B, Bernoulli to_A)
    Parameters
    Type Name Description
    Boolean areEqual

    Constant value for areEqual.

    Bernoulli A

    Incoming message from a.

    Boolean B

    Constant value for b.

    Bernoulli to_A

    Outgoing message to A.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(a) p(a) factor(areEqual,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Boolean, Boolean, Bernoulli, Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(bool areEqual, bool A, Bernoulli B, Bernoulli to_B)
    Parameters
    Type Name Description
    Boolean areEqual

    Constant value for areEqual.

    Boolean A

    Constant value for a.

    Bernoulli B

    Incoming message from b.

    Bernoulli to_B

    Outgoing message to B.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(b) p(b) factor(areEqual,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Boolean, Boolean, Boolean)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(bool areEqual, bool a, bool b)
    Parameters
    Type Name Description
    Boolean areEqual

    Constant value for areEqual.

    Boolean a

    Constant value for a.

    Boolean b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(areEqual,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.