Search Results for

    Show / Hide Table of Contents

    Class BooleanAndOp

    Provides outgoing messages for And(Boolean, Boolean), given random arguments to the function.

    Inheritance
    Object
    BooleanAndOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Factor), "And", new Type[]{})]
    [Quality(QualityBand.Mature)]
    public static class BooleanAndOp

    Methods

    AAverageConditional(Bernoulli, Bernoulli)

    EP message to a.

    Declaration
    public static Bernoulli AAverageConditional(Bernoulli and, Bernoulli B)
    Parameters
    Type Name Description
    Bernoulli and

    Incoming message from and. Must be a proper distribution. If uniform, the result will be uniform.

    Bernoulli B

    Incoming message from b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(and,b) p(and,b) factor(and,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    and is not a proper distribution.

    AAverageConditional(Bernoulli, Boolean)

    EP message to a.

    Declaration
    public static Bernoulli AAverageConditional(Bernoulli and, bool B)
    Parameters
    Type Name Description
    Bernoulli and

    Incoming message from and. Must be a proper distribution. If uniform, the result will be uniform.

    Boolean B

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(and) p(and) factor(and,a,b)]/p(a).

    Exceptions
    Type Condition
    ImproperMessageException

    and is not a proper distribution.

    AAverageConditional(Boolean, Bernoulli)

    EP message to a.

    Declaration
    public static Bernoulli AAverageConditional(bool and, Bernoulli B)
    Parameters
    Type Name Description
    Boolean and

    Constant value for and.

    Bernoulli B

    Incoming message from b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is a distribution matching the moments of a as the random arguments are varied. The formula is proj[p(a) sum_(b) p(b) factor(and,a,b)]/p(a).

    AAverageConditional(Boolean, Boolean)

    EP message to a.

    Declaration
    public static Bernoulli AAverageConditional(bool and, bool B)
    Parameters
    Type Name Description
    Boolean and

    Constant value for and.

    Boolean B

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the a argument.

    Remarks

    The outgoing message is the factor viewed as a function of a conditioned on the given values.

    AAverageLogarithm(Bernoulli, Bernoulli)

    VMP message to a.

    Declaration
    public static Bernoulli AAverageLogarithm(Bernoulli and, Bernoulli B)
    Parameters
    Type Name Description
    Bernoulli and

    Incoming message from and. Must be a proper distribution. If uniform, the result will be uniform.

    Bernoulli B

    Incoming message from b.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the a argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a. Because the factor is deterministic, and is integrated out before taking the logarithm. The formula is exp(sum_(b) p(b) log(sum_and p(and) factor(and,a,b))).

    Exceptions
    Type Condition
    ImproperMessageException

    and is not a proper distribution.

    AAverageLogarithm(Bernoulli, Boolean)

    VMP message to a.

    Declaration
    public static Bernoulli AAverageLogarithm(Bernoulli and, bool B)
    Parameters
    Type Name Description
    Bernoulli and

    Incoming message from and. Must be a proper distribution. If uniform, the result will be uniform.

    Boolean B

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the a argument.

    Remarks

    The outgoing message is the factor viewed as a function of a with and integrated out. The formula is sum_and p(and) factor(and,a,b).

    Exceptions
    Type Condition
    ImproperMessageException

    and is not a proper distribution.

    AAverageLogarithm(Boolean, Bernoulli)

    VMP message to a.

    Declaration
    [NotSupported("Variational Message Passing does not support an And factor with fixed output.")]
    public static Bernoulli AAverageLogarithm(bool and, Bernoulli B)
    Parameters
    Type Name Description
    Boolean and

    Constant value for and.

    Bernoulli B

    Incoming message from b.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the a argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except a. The formula is exp(sum_(b) p(b) log(factor(and,a,b))).

    AAverageLogarithm(Boolean, Boolean)

    VMP message to a.

    Declaration
    public static Bernoulli AAverageLogarithm(bool and, bool B)
    Parameters
    Type Name Description
    Boolean and

    Constant value for and.

    Boolean B

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the a argument.

    Remarks

    The outgoing message is the factor viewed as a function of a conditioned on the given values.

    AndAverageConditional(Bernoulli, Bernoulli)

    EP message to and.

    Declaration
    public static Bernoulli AndAverageConditional(Bernoulli A, Bernoulli B)
    Parameters
    Type Name Description
    Bernoulli A

    Incoming message from a.

    Bernoulli B

    Incoming message from b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the and argument.

    Remarks

    The outgoing message is a distribution matching the moments of and as the random arguments are varied. The formula is proj[p(and) sum_(a,b) p(a,b) factor(and,a,b)]/p(and).

    AndAverageConditional(Bernoulli, Boolean)

    EP message to and.

    Declaration
    public static Bernoulli AndAverageConditional(Bernoulli A, bool B)
    Parameters
    Type Name Description
    Bernoulli A

    Incoming message from a.

    Boolean B

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the and argument.

    Remarks

    The outgoing message is a distribution matching the moments of and as the random arguments are varied. The formula is proj[p(and) sum_(a) p(a) factor(and,a,b)]/p(and).

    AndAverageConditional(Boolean, Bernoulli)

    EP message to and.

    Declaration
    public static Bernoulli AndAverageConditional(bool A, Bernoulli B)
    Parameters
    Type Name Description
    Boolean A

    Constant value for a.

    Bernoulli B

    Incoming message from b.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the and argument.

    Remarks

    The outgoing message is a distribution matching the moments of and as the random arguments are varied. The formula is proj[p(and) sum_(b) p(b) factor(and,a,b)]/p(and).

    AndAverageLogarithm(Bernoulli, Bernoulli)

    VMP message to and.

    Declaration
    public static Bernoulli AndAverageLogarithm(Bernoulli A, Bernoulli B)
    Parameters
    Type Name Description
    Bernoulli A

    Incoming message from a.

    Bernoulli B

    Incoming message from b.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the and argument.

    Remarks

    The outgoing message is a distribution matching the moments of and as the random arguments are varied. The formula is proj[sum_(a,b) p(a,b) factor(and,a,b)].

    AndAverageLogarithm(Bernoulli, Boolean)

    VMP message to and.

    Declaration
    public static Bernoulli AndAverageLogarithm(Bernoulli A, bool B)
    Parameters
    Type Name Description
    Bernoulli A

    Incoming message from a.

    Boolean B

    Constant value for b.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the and argument.

    Remarks

    The outgoing message is a distribution matching the moments of and as the random arguments are varied. The formula is proj[sum_(a) p(a) factor(and,a,b)].

    AndAverageLogarithm(Boolean, Bernoulli)

    VMP message to and.

    Declaration
    public static Bernoulli AndAverageLogarithm(bool A, Bernoulli B)
    Parameters
    Type Name Description
    Boolean A

    Constant value for a.

    Bernoulli B

    Incoming message from b.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the and argument.

    Remarks

    The outgoing message is a distribution matching the moments of and as the random arguments are varied. The formula is proj[sum_(b) p(b) factor(and,a,b)].

    AverageLogFactor()

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor()
    Returns
    Type Description
    Double

    Zero.

    Remarks

    The formula for the result is log(factor(and,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Boolean, Boolean, Boolean)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(bool and, bool a, bool b)
    Parameters
    Type Name Description
    Boolean and

    Constant value for and.

    Boolean a

    Constant value for a.

    Boolean b

    Constant value for b.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    The formula for the result is log(factor(and,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    BAverageConditional(Bernoulli, Bernoulli)

    EP message to b.

    Declaration
    public static Bernoulli BAverageConditional(Bernoulli and, Bernoulli A)
    Parameters
    Type Name Description
    Bernoulli and

    Incoming message from and. Must be a proper distribution. If uniform, the result will be uniform.

    Bernoulli A

    Incoming message from a.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(and,a) p(and,a) factor(and,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    and is not a proper distribution.

    BAverageConditional(Bernoulli, Boolean)

    EP message to b.

    Declaration
    public static Bernoulli BAverageConditional(Bernoulli and, bool A)
    Parameters
    Type Name Description
    Bernoulli and

    Incoming message from and. Must be a proper distribution. If uniform, the result will be uniform.

    Boolean A

    Constant value for a.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(and) p(and) factor(and,a,b)]/p(b).

    Exceptions
    Type Condition
    ImproperMessageException

    and is not a proper distribution.

    BAverageConditional(Boolean, Bernoulli)

    EP message to b.

    Declaration
    public static Bernoulli BAverageConditional(bool and, Bernoulli A)
    Parameters
    Type Name Description
    Boolean and

    Constant value for and.

    Bernoulli A

    Incoming message from a.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is a distribution matching the moments of b as the random arguments are varied. The formula is proj[p(b) sum_(a) p(a) factor(and,a,b)]/p(b).

    BAverageConditional(Boolean, Boolean)

    EP message to b.

    Declaration
    public static Bernoulli BAverageConditional(bool and, bool A)
    Parameters
    Type Name Description
    Boolean and

    Constant value for and.

    Boolean A

    Constant value for a.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the b argument.

    Remarks

    The outgoing message is the factor viewed as a function of b conditioned on the given values.

    BAverageLogarithm(Bernoulli, Bernoulli)

    VMP message to b.

    Declaration
    public static Bernoulli BAverageLogarithm(Bernoulli and, Bernoulli A)
    Parameters
    Type Name Description
    Bernoulli and

    Incoming message from and. Must be a proper distribution. If uniform, the result will be uniform.

    Bernoulli A

    Incoming message from a.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the b argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b. Because the factor is deterministic, and is integrated out before taking the logarithm. The formula is exp(sum_(a) p(a) log(sum_and p(and) factor(and,a,b))).

    Exceptions
    Type Condition
    ImproperMessageException

    and is not a proper distribution.

    BAverageLogarithm(Bernoulli, Boolean)

    VMP message to b.

    Declaration
    public static Bernoulli BAverageLogarithm(Bernoulli and, bool A)
    Parameters
    Type Name Description
    Bernoulli and

    Incoming message from and. Must be a proper distribution. If uniform, the result will be uniform.

    Boolean A

    Constant value for a.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the b argument.

    Remarks

    The outgoing message is the factor viewed as a function of b with and integrated out. The formula is sum_and p(and) factor(and,a,b).

    Exceptions
    Type Condition
    ImproperMessageException

    and is not a proper distribution.

    BAverageLogarithm(Boolean, Bernoulli)

    VMP message to b.

    Declaration
    [NotSupported("Variational Message Passing does not support an And factor with fixed output.")]
    public static Bernoulli BAverageLogarithm(bool and, Bernoulli A)
    Parameters
    Type Name Description
    Boolean and

    Constant value for and.

    Bernoulli A

    Incoming message from a.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the b argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except b. The formula is exp(sum_(a) p(a) log(factor(and,a,b))).

    BAverageLogarithm(Boolean, Boolean)

    VMP message to b.

    Declaration
    public static Bernoulli BAverageLogarithm(bool and, bool A)
    Parameters
    Type Name Description
    Boolean and

    Constant value for and.

    Boolean A

    Constant value for a.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the b argument.

    Remarks

    The outgoing message is the factor viewed as a function of b conditioned on the given values.

    LogAverageFactor(Bernoulli, Bernoulli, Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Bernoulli and, Bernoulli a, Bernoulli b)
    Parameters
    Type Name Description
    Bernoulli and

    Incoming message from and.

    Bernoulli a

    Incoming message from a.

    Bernoulli b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(and,a,b) p(and,a,b) factor(and,a,b)).

    LogAverageFactor(Bernoulli, Bernoulli, Boolean)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Bernoulli and, Bernoulli a, bool b)
    Parameters
    Type Name Description
    Bernoulli and

    Incoming message from and.

    Bernoulli a

    Incoming message from a.

    Boolean b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(and,a) p(and,a) factor(and,a,b)).

    LogAverageFactor(Bernoulli, Boolean, Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Bernoulli and, bool a, Bernoulli b)
    Parameters
    Type Name Description
    Bernoulli and

    Incoming message from and.

    Boolean a

    Constant value for a.

    Bernoulli b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(and,b) p(and,b) factor(and,a,b)).

    LogAverageFactor(Bernoulli, Boolean, Boolean)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Bernoulli and, bool a, bool b)
    Parameters
    Type Name Description
    Bernoulli and

    Incoming message from and.

    Boolean a

    Constant value for a.

    Boolean b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(and) p(and) factor(and,a,b)).

    LogAverageFactor(Boolean, Bernoulli, Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(bool and, Bernoulli a, Bernoulli b)
    Parameters
    Type Name Description
    Boolean and

    Constant value for and.

    Bernoulli a

    Incoming message from a.

    Bernoulli b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(a,b) p(a,b) factor(and,a,b)).

    LogAverageFactor(Boolean, Bernoulli, Boolean)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(bool and, Bernoulli a, bool b)
    Parameters
    Type Name Description
    Boolean and

    Constant value for and.

    Bernoulli a

    Incoming message from a.

    Boolean b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(a) p(a) factor(and,a,b)).

    LogAverageFactor(Boolean, Boolean, Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(bool and, bool a, Bernoulli b)
    Parameters
    Type Name Description
    Boolean and

    Constant value for and.

    Boolean a

    Constant value for a.

    Bernoulli b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(b) p(b) factor(and,a,b)).

    LogAverageFactor(Boolean, Boolean, Boolean)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(bool and, bool a, bool b)
    Parameters
    Type Name Description
    Boolean and

    Constant value for and.

    Boolean a

    Constant value for a.

    Boolean b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(and,a,b)).

    LogEvidenceRatio(Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Bernoulli and)
    Parameters
    Type Name Description
    Bernoulli and

    Incoming message from and.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(and) p(and) factor(and,a,b) / sum_and p(and) messageTo(and)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Boolean, Bernoulli, Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(bool and, Bernoulli a, Bernoulli b)
    Parameters
    Type Name Description
    Boolean and

    Constant value for and.

    Bernoulli a

    Incoming message from a.

    Bernoulli b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(a,b) p(a,b) factor(and,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Boolean, Bernoulli, Boolean)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(bool and, Bernoulli a, bool b)
    Parameters
    Type Name Description
    Boolean and

    Constant value for and.

    Bernoulli a

    Incoming message from a.

    Boolean b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(a) p(a) factor(and,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Boolean, Boolean, Bernoulli)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(bool and, bool a, Bernoulli b)
    Parameters
    Type Name Description
    Boolean and

    Constant value for and.

    Boolean a

    Constant value for a.

    Bernoulli b

    Incoming message from b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(b) p(b) factor(and,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Boolean, Boolean, Boolean)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(bool and, bool a, bool b)
    Parameters
    Type Name Description
    Boolean and

    Constant value for and.

    Boolean a

    Constant value for a.

    Boolean b

    Constant value for b.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(and,a,b)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.