Search Results for

    Show / Hide Table of Contents

    Class BinomialOp

    Provides outgoing messages for Binomial(Int32, Double), given random arguments to the function.

    Inheritance
    Object
    BinomialOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(new string[]{"sample", "trialCount", "p"}, typeof(Rand), "Binomial", new Type[]{typeof(int), typeof(double)})]
    [Quality(QualityBand.Preview)]
    public static class BinomialOp
    Remarks

    The factor is f(sample,n,p) = choose(n,sample) p^sample (1-p)^(n-sample)

    Methods

    AverageLogFactor(Int32, Beta, Discrete)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(int sample, Beta p, Discrete trialCount)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Beta p

    Incoming message from p.

    Discrete trialCount

    Incoming message from n.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(p,n) p(p,n) log(factor(binomial,n,p)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Int32, Beta, Int32)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(int sample, Beta p, int trialCount)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Beta p

    Incoming message from p.

    Int32 trialCount

    Constant value for n.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(p) p(p) log(factor(binomial,n,p)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Int32, Double, Discrete)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(int sample, double p, Discrete trialCount)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Double p

    Constant value for p.

    Discrete trialCount

    Incoming message from n.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(n) p(n) log(factor(binomial,n,p)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Int32, Double, Int32)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(int sample, double p, int trialCount)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Double p

    Constant value for p.

    Int32 trialCount

    Constant value for n.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(binomial,n,p)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    LogAverageFactor(Discrete, Discrete)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Discrete sample, Discrete to_sample)
    Parameters
    Type Name Description
    Discrete sample

    Incoming message from binomial.

    Discrete to_sample

    Outgoing message to sample.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(binomial) p(binomial) factor(binomial,n,p)).

    LogAverageFactor(Int32, Beta, Discrete)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(int sample, Beta p, Discrete trialCount)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Beta p

    Incoming message from p.

    Discrete trialCount

    Incoming message from n.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(p,n) p(p,n) factor(binomial,n,p)).

    LogAverageFactor(Int32, Beta, Int32)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(int sample, Beta p, int trialCount)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Beta p

    Incoming message from p.

    Int32 trialCount

    Constant value for n.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(p) p(p) factor(binomial,n,p)).

    LogAverageFactor(Int32, Double, Discrete)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(int sample, double p, Discrete trialCount)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Double p

    Constant value for p.

    Discrete trialCount

    Incoming message from n.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(n) p(n) factor(binomial,n,p)).

    LogAverageFactor(Int32, Double, Int32)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(int sample, double p, int trialCount)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Double p

    Constant value for p.

    Int32 trialCount

    Constant value for n.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(binomial,n,p)).

    LogEvidenceRatio(Discrete)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Discrete sample)
    Parameters
    Type Name Description
    Discrete sample

    Incoming message from binomial.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(binomial) p(binomial) factor(binomial,n,p) / sum_binomial p(binomial) messageTo(binomial)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Int32, Beta, Discrete)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(int sample, Beta p, Discrete trialCount)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Beta p

    Incoming message from p.

    Discrete trialCount

    Incoming message from n.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(p,n) p(p,n) factor(binomial,n,p)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Int32, Beta, Int32)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(int sample, Beta p, int trialCount)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Beta p

    Incoming message from p.

    Int32 trialCount

    Constant value for n.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(p) p(p) factor(binomial,n,p)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Int32, Double, Discrete)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(int sample, double p, Discrete trialCount)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Double p

    Constant value for p.

    Discrete trialCount

    Incoming message from n.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(n) p(n) factor(binomial,n,p)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Int32, Double, Int32)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(int sample, double p, int trialCount)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Double p

    Constant value for p.

    Int32 trialCount

    Constant value for n.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(binomial,n,p)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    PAverageConditional(Discrete, Int32)

    EP message to p.

    Declaration
    public static Beta PAverageConditional(Discrete sample, int trialCount)
    Parameters
    Type Name Description
    Discrete sample

    Incoming message from binomial.

    Int32 trialCount

    Constant value for n.

    Returns
    Type Description
    Beta

    The outgoing EP message to the p argument.

    Remarks

    The outgoing message is a distribution matching the moments of p as the random arguments are varied. The formula is proj[p(p) sum_(binomial) p(binomial) factor(binomial,n,p)]/p(p).

    PAverageConditional(Int32, Discrete, Beta)

    EP message to p.

    Declaration
    public static Beta PAverageConditional(int sample, Discrete trialCount, Beta p)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Discrete trialCount

    Incoming message from n.

    Beta p

    Incoming message from p.

    Returns
    Type Description
    Beta

    The outgoing EP message to the p argument.

    Remarks

    The outgoing message is a distribution matching the moments of p as the random arguments are varied. The formula is proj[p(p) sum_(n) p(n) factor(binomial,n,p)]/p(p).

    PAverageConditional(Int32, Int32)

    EP message to p.

    Declaration
    public static Beta PAverageConditional(int sample, int trialCount)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Int32 trialCount

    Constant value for n.

    Returns
    Type Description
    Beta

    The outgoing EP message to the p argument.

    Remarks

    The outgoing message is the factor viewed as a function of p conditioned on the given values.

    PAverageLogarithm(Discrete, Discrete)

    VMP message to p.

    Declaration
    public static Beta PAverageLogarithm(Discrete sample, Discrete trialCount)
    Parameters
    Type Name Description
    Discrete sample

    Incoming message from binomial.

    Discrete trialCount

    Incoming message from n.

    Returns
    Type Description
    Beta

    The outgoing VMP message to the p argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except p. The formula is exp(sum_(binomial,n) p(binomial,n) log(factor(binomial,n,p))).

    PAverageLogarithm(Discrete, Int32)

    VMP message to p.

    Declaration
    public static Beta PAverageLogarithm(Discrete sample, int trialCount)
    Parameters
    Type Name Description
    Discrete sample

    Incoming message from binomial.

    Int32 trialCount

    Constant value for n.

    Returns
    Type Description
    Beta

    The outgoing VMP message to the p argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except p. The formula is exp(sum_(binomial) p(binomial) log(factor(binomial,n,p))).

    PAverageLogarithm(Int32, Discrete)

    VMP message to p.

    Declaration
    public static Beta PAverageLogarithm(int sample, Discrete trialCount)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Discrete trialCount

    Incoming message from n.

    Returns
    Type Description
    Beta

    The outgoing VMP message to the p argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except p. The formula is exp(sum_(n) p(n) log(factor(binomial,n,p))).

    PAverageLogarithm(Int32, Int32)

    VMP message to p.

    Declaration
    public static Beta PAverageLogarithm(int sample, int trialCount)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Int32 trialCount

    Constant value for n.

    Returns
    Type Description
    Beta

    The outgoing VMP message to the p argument.

    Remarks

    The outgoing message is the factor viewed as a function of p conditioned on the given values.

    SampleAverageConditional(Beta, Discrete, Discrete)

    EP message to binomial.

    Declaration
    public static Discrete SampleAverageConditional(Beta p, Discrete trialCount, Discrete result)
    Parameters
    Type Name Description
    Beta p

    Incoming message from p.

    Discrete trialCount

    Incoming message from n.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is a distribution matching the moments of binomial as the random arguments are varied. The formula is proj[p(binomial) sum_(p,n) p(p,n) factor(binomial,n,p)]/p(binomial).

    SampleAverageConditional(Beta, Int32, Discrete)

    EP message to binomial.

    Declaration
    public static Discrete SampleAverageConditional(Beta p, int trialCount, Discrete result)
    Parameters
    Type Name Description
    Beta p

    Incoming message from p.

    Int32 trialCount

    Constant value for n.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is a distribution matching the moments of binomial as the random arguments are varied. The formula is proj[p(binomial) sum_(p) p(p) factor(binomial,n,p)]/p(binomial).

    SampleAverageConditional(Double, Discrete, Discrete)

    EP message to binomial.

    Declaration
    public static Discrete SampleAverageConditional(double p, Discrete trialCount, Discrete result)
    Parameters
    Type Name Description
    Double p

    Constant value for p.

    Discrete trialCount

    Incoming message from n.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is a distribution matching the moments of binomial as the random arguments are varied. The formula is proj[p(binomial) sum_(n) p(n) factor(binomial,n,p)]/p(binomial).

    SampleAverageConditional(Double, Poisson)

    EP message to binomial.

    Declaration
    public static Poisson SampleAverageConditional(double p, Poisson trialCount)
    Parameters
    Type Name Description
    Double p

    Constant value for p.

    Poisson trialCount

    Incoming message from n.

    Returns
    Type Description
    Poisson

    The outgoing EP message to the binomial argument.

    Remarks

    The outgoing message is a distribution matching the moments of binomial as the random arguments are varied. The formula is proj[p(binomial) sum_(n) p(n) factor(binomial,n,p)]/p(binomial).

    SampleAverageConditional(Double, Int32, Discrete)

    EP message to binomial.

    Declaration
    public static Discrete SampleAverageConditional(double p, int trialCount, Discrete result)
    Parameters
    Type Name Description
    Double p

    Constant value for p.

    Int32 trialCount

    Constant value for n.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the factor viewed as a function of binomial conditioned on the given values.

    SampleAverageConditionalInit(Discrete)

    Declaration
    public static Discrete SampleAverageConditionalInit(Discrete trialCount)
    Parameters
    Type Name Description
    Discrete trialCount

    Incoming message from n.

    Returns
    Type Description
    Discrete
    Remarks

    SampleAverageConditionalInit(Int32)

    Declaration
    public static Discrete SampleAverageConditionalInit(int trialCount)
    Parameters
    Type Name Description
    Int32 trialCount

    Constant value for n.

    Returns
    Type Description
    Discrete
    Remarks

    TrialCountAverageConditional(Discrete, Beta, Discrete)

    EP message to n.

    Declaration
    public static Discrete TrialCountAverageConditional(Discrete sample, Beta p, Discrete result)
    Parameters
    Type Name Description
    Discrete sample

    Incoming message from binomial.

    Beta p

    Incoming message from p.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is a distribution matching the moments of n as the random arguments are varied. The formula is proj[p(n) sum_(binomial,p) p(binomial,p) factor(binomial,n,p)]/p(n).

    TrialCountAverageConditional(Discrete, Double, Discrete)

    EP message to n.

    Declaration
    public static Discrete TrialCountAverageConditional(Discrete sample, double p, Discrete result)
    Parameters
    Type Name Description
    Discrete sample

    Incoming message from binomial.

    Double p

    Constant value for p.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is a distribution matching the moments of n as the random arguments are varied. The formula is proj[p(n) sum_(binomial) p(binomial) factor(binomial,n,p)]/p(n).

    TrialCountAverageConditional(Poisson, Double)

    EP message to n.

    Declaration
    public static Poisson TrialCountAverageConditional(Poisson sample, double p)
    Parameters
    Type Name Description
    Poisson sample

    Incoming message from binomial.

    Double p

    Constant value for p.

    Returns
    Type Description
    Poisson

    The outgoing EP message to the n argument.

    Remarks

    The outgoing message is a distribution matching the moments of n as the random arguments are varied. The formula is proj[p(n) sum_(binomial) p(binomial) factor(binomial,n,p)]/p(n).

    TrialCountAverageConditional(Int32, Beta, Discrete)

    EP message to n.

    Declaration
    public static Discrete TrialCountAverageConditional(int sample, Beta p, Discrete result)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Beta p

    Incoming message from p.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is a distribution matching the moments of n as the random arguments are varied. The formula is proj[p(n) sum_(p) p(p) factor(binomial,n,p)]/p(n).

    TrialCountAverageConditional(Int32, Double, Discrete)

    EP message to n.

    Declaration
    public static Discrete TrialCountAverageConditional(int sample, double p, Discrete result)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Double p

    Constant value for p.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the factor viewed as a function of n conditioned on the given values.

    TrialCountAverageConditional(Int32, Double, Poisson)

    EP message to n.

    Declaration
    public static Poisson TrialCountAverageConditional(int sample, double p, Poisson trialCount)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Double p

    Constant value for p.

    Poisson trialCount

    Incoming message from n.

    Returns
    Type Description
    Poisson

    The outgoing EP message to the n argument.

    Remarks

    The outgoing message is the factor viewed as a function of n conditioned on the given values.

    TrialCountAverageLogarithm(Int32, Beta, Discrete)

    VMP message to n.

    Declaration
    public static Discrete TrialCountAverageLogarithm(int sample, Beta p, Discrete result)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Beta p

    Incoming message from p.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except n. The formula is exp(sum_(p) p(p) log(factor(binomial,n,p))).

    TrialCountAverageLogarithm(Int32, Double, Discrete)

    VMP message to n.

    Declaration
    public static Discrete TrialCountAverageLogarithm(int sample, double p, Discrete result)
    Parameters
    Type Name Description
    Int32 sample

    Constant value for binomial.

    Double p

    Constant value for p.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the factor viewed as a function of n conditioned on the given values.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.