Search Results for

    Show / Hide Table of Contents

    Class BetaOp

    Provides outgoing messages for Sample(Double, Double), given random arguments to the function.

    Inheritance
    Object
    BetaOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Beta), "Sample", new Type[]{typeof(double), typeof(double)})]
    [Quality(QualityBand.Stable)]
    public static class BetaOp

    Methods

    AverageLogFactor(Beta, Double, Double, Beta)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(Beta sample, double trueCount, double falseCount, Beta to_sample)
    Parameters
    Type Name Description
    Beta sample

    Incoming message from sample.

    Double trueCount

    Constant value for trueCount.

    Double falseCount

    Constant value for falseCount.

    Beta to_sample

    Outgoing message to sample.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(sample) p(sample) log(factor(sample,trueCount,falseCount)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Double, Gamma, Double)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(double sample, Gamma trueCount, double falseCount)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Gamma trueCount

    Incoming message from trueCount.

    Double falseCount

    Constant value for falseCount.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(trueCount) p(trueCount) log(factor(sample,trueCount,falseCount)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Double, Double, Gamma)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(double sample, double trueCount, Gamma falseCount)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double trueCount

    Constant value for trueCount.

    Gamma falseCount

    Incoming message from falseCount.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is sum_(falseCount) p(falseCount) log(factor(sample,trueCount,falseCount)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Double, Double, Double)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(double sample, double trueCount, double falseCount)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double trueCount

    Constant value for trueCount.

    Double falseCount

    Constant value for falseCount.

    Returns
    Type Description
    Double

    Average of the factor's log-value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sample,trueCount,falseCount)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    FalseCountAverageConditional(Double, Double)

    EP message to falseCount.

    Declaration
    public static Gamma FalseCountAverageConditional(double sample, double trueCount)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double trueCount

    Constant value for trueCount.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the falseCount argument.

    Remarks

    The outgoing message is the factor viewed as a function of falseCount conditioned on the given values.

    FalseCountAverageLogarithm(Double, Double)

    VMP message to falseCount.

    Declaration
    public static Gamma FalseCountAverageLogarithm(double sample, double trueCount)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double trueCount

    Constant value for trueCount.

    Returns
    Type Description
    Gamma

    The outgoing VMP message to the falseCount argument.

    Remarks

    The outgoing message is the factor viewed as a function of falseCount conditioned on the given values.

    LogAverageFactor(Beta, Double, Double, Beta)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(Beta sample, double trueCount, double falseCount, Beta to_sample)
    Parameters
    Type Name Description
    Beta sample

    Incoming message from sample.

    Double trueCount

    Constant value for trueCount.

    Double falseCount

    Constant value for falseCount.

    Beta to_sample

    Outgoing message to sample.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(sample) p(sample) factor(sample,trueCount,falseCount)).

    LogAverageFactor(Double, Double, Double)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double sample, double trueCount, double falseCount)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double trueCount

    Constant value for trueCount.

    Double falseCount

    Constant value for falseCount.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(sample,trueCount,falseCount)).

    LogEvidenceRatio(Beta, Double, Double)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(Beta sample, double trueCount, double falseCount)
    Parameters
    Type Name Description
    Beta sample

    Incoming message from sample.

    Double trueCount

    Constant value for trueCount.

    Double falseCount

    Constant value for falseCount.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(sample) p(sample) factor(sample,trueCount,falseCount) / sum_sample p(sample) messageTo(sample)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double, Gamma, Double)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double sample, Gamma trueCount, double falseCount)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Gamma trueCount

    Incoming message from trueCount.

    Double falseCount

    Constant value for falseCount.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(trueCount) p(trueCount) factor(sample,trueCount,falseCount)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double, Double, Gamma)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double sample, double trueCount, Gamma falseCount)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double trueCount

    Constant value for trueCount.

    Gamma falseCount

    Incoming message from falseCount.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(falseCount) p(falseCount) factor(sample,trueCount,falseCount)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double, Double, Double)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double sample, double trueCount, double falseCount)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double trueCount

    Constant value for trueCount.

    Double falseCount

    Constant value for falseCount.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(sample,trueCount,falseCount)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    SampleAverageConditional(Double, Double)

    EP message to sample.

    Declaration
    public static Beta SampleAverageConditional(double trueCount, double falseCount)
    Parameters
    Type Name Description
    Double trueCount

    Constant value for trueCount.

    Double falseCount

    Constant value for falseCount.

    Returns
    Type Description
    Beta

    The outgoing EP message to the sample argument.

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    SampleAverageLogarithm(Double, Double)

    VMP message to sample.

    Declaration
    public static Beta SampleAverageLogarithm(double trueCount, double falseCount)
    Parameters
    Type Name Description
    Double trueCount

    Constant value for trueCount.

    Double falseCount

    Constant value for falseCount.

    Returns
    Type Description
    Beta

    The outgoing VMP message to the sample argument.

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    TrueCountAverageConditional(Double, Double)

    EP message to trueCount.

    Declaration
    public static Gamma TrueCountAverageConditional(double sample, double falseCount)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double falseCount

    Constant value for falseCount.

    Returns
    Type Description
    Gamma

    The outgoing EP message to the trueCount argument.

    Remarks

    The outgoing message is the factor viewed as a function of trueCount conditioned on the given values.

    TrueCountAverageLogarithm(Double, Double)

    VMP message to trueCount.

    Declaration
    public static Gamma TrueCountAverageLogarithm(double sample, double falseCount)
    Parameters
    Type Name Description
    Double sample

    Constant value for sample.

    Double falseCount

    Constant value for falseCount.

    Returns
    Type Description
    Gamma

    The outgoing VMP message to the trueCount argument.

    Remarks

    The outgoing message is the factor viewed as a function of trueCount conditioned on the given values.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.