Search Results for

    Show / Hide Table of Contents

    Class BernoulliFromDiscreteOp

    Provides outgoing messages for BernoulliFromDiscrete(Int32, Double[]), given random arguments to the function.

    Inheritance
    Object
    BernoulliFromDiscreteOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(new string[]{"sample", "index", "probTrue"}, typeof(Factor), "BernoulliFromDiscrete", new Type[]{})]
    public static class BernoulliFromDiscreteOp

    Methods

    IndexAverageConditional(Bernoulli, Double[], Discrete)

    EP message to index.

    Declaration
    public static Discrete IndexAverageConditional(Bernoulli sample, double[] ProbTrue, Discrete result)
    Parameters
    Type Name Description
    Bernoulli sample

    Incoming message from sample. Must be a proper distribution. If uniform, the result will be uniform.

    Double[] ProbTrue

    Constant value for probTrue.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is a distribution matching the moments of index as the random arguments are varied. The formula is proj[p(index) sum_(sample) p(sample) factor(sample,index,probTrue)]/p(index).

    Exceptions
    Type Condition
    ImproperMessageException

    sample is not a proper distribution.

    IndexAverageConditional(Boolean, Double[], Discrete)

    EP message to index.

    Declaration
    public static Discrete IndexAverageConditional(bool sample, double[] ProbTrue, Discrete result)
    Parameters
    Type Name Description
    Boolean sample

    Constant value for sample.

    Double[] ProbTrue

    Constant value for probTrue.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the factor viewed as a function of index conditioned on the given values.

    IndexAverageLogarithm(Bernoulli, Double[], Discrete)

    VMP message to index.

    Declaration
    public static Discrete IndexAverageLogarithm(Bernoulli sample, double[] ProbTrue, Discrete result)
    Parameters
    Type Name Description
    Bernoulli sample

    Incoming message from sample.

    Double[] ProbTrue

    Constant value for probTrue.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except index. The formula is exp(sum_(sample) p(sample) log(factor(sample,index,probTrue))).

    IndexAverageLogarithm(Boolean, Double[], Discrete)

    VMP message to index.

    Declaration
    public static Discrete IndexAverageLogarithm(bool sample, double[] ProbTrue, Discrete result)
    Parameters
    Type Name Description
    Boolean sample

    Constant value for sample.

    Double[] ProbTrue

    Constant value for probTrue.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the factor viewed as a function of index conditioned on the given values.

    IndexConditional(Boolean, Double[], Discrete)

    Gibbs message to index.

    Declaration
    public static Discrete IndexConditional(bool sample, double[] ProbTrue, Discrete result)
    Parameters
    Type Name Description
    Boolean sample

    Constant value for sample.

    Double[] ProbTrue

    Constant value for probTrue.

    Discrete result

    Modified to contain the outgoing message.

    Returns
    Type Description
    Discrete

    result

    Remarks

    The outgoing message is the factor viewed as a function of index conditioned on the given values.

    LogAverageFactor(Boolean, Discrete, Double[])

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(bool sample, Discrete index, double[] probTrue)
    Parameters
    Type Name Description
    Boolean sample

    Constant value for sample.

    Discrete index

    Incoming message from index.

    Double[] probTrue

    Constant value for probTrue.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(index) p(index) factor(sample,index,probTrue)).

    LogEvidenceRatio(Boolean, Discrete, Double[])

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(bool sample, Discrete index, double[] probTrue)
    Parameters
    Type Name Description
    Boolean sample

    Constant value for sample.

    Discrete index

    Incoming message from index.

    Double[] probTrue

    Constant value for probTrue.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(index) p(index) factor(sample,index,probTrue)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    SampleAverageConditional(Discrete, Double[])

    EP message to sample.

    Declaration
    public static Bernoulli SampleAverageConditional(Discrete index, double[] ProbTrue)
    Parameters
    Type Name Description
    Discrete index

    Incoming message from index.

    Double[] ProbTrue

    Constant value for probTrue.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the sample argument.

    Remarks

    The outgoing message is a distribution matching the moments of sample as the random arguments are varied. The formula is proj[p(sample) sum_(index) p(index) factor(sample,index,probTrue)]/p(sample).

    SampleAverageConditional(Int32, Double[])

    EP message to sample.

    Declaration
    public static Bernoulli SampleAverageConditional(int index, double[] ProbTrue)
    Parameters
    Type Name Description
    Int32 index

    Constant value for index.

    Double[] ProbTrue

    Constant value for probTrue.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the sample argument.

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    SampleAverageLogarithm(Discrete, Double[])

    VMP message to sample.

    Declaration
    public static Bernoulli SampleAverageLogarithm(Discrete index, double[] ProbTrue)
    Parameters
    Type Name Description
    Discrete index

    Incoming message from index.

    Double[] ProbTrue

    Constant value for probTrue.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the sample argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except sample. The formula is exp(sum_(index) p(index) log(factor(sample,index,probTrue))).

    SampleAverageLogarithm(Int32, Double[])

    VMP message to sample.

    Declaration
    public static Bernoulli SampleAverageLogarithm(int index, double[] ProbTrue)
    Parameters
    Type Name Description
    Int32 index

    Constant value for index.

    Double[] ProbTrue

    Constant value for probTrue.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the sample argument.

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    SampleConditional(Int32, Double[])

    Gibbs message to sample.

    Declaration
    public static Bernoulli SampleConditional(int index, double[] ProbTrue)
    Parameters
    Type Name Description
    Int32 index

    Constant value for index.

    Double[] ProbTrue

    Constant value for probTrue.

    Returns
    Type Description
    Bernoulli

    The outgoing Gibbs message to the sample argument.

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.