Search Results for

    Show / Hide Table of Contents

    Class BernoulliFromBooleanArray

    Provides outgoing messages for BernoulliFromBoolean(Boolean, Double[]), given random arguments to the function.

    Inheritance
    Object
    BernoulliFromBooleanArray
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(new string[]{"Sample", "Choice", "ProbTrue"}, typeof(Factor), "BernoulliFromBoolean", new Type[]{typeof(bool), typeof(double[])})]
    public static class BernoulliFromBooleanArray

    Methods

    ChoiceAverageConditional(Bernoulli, Double[])

    EP message to choice.

    Declaration
    public static Bernoulli ChoiceAverageConditional(Bernoulli sample, double[] probTrue)
    Parameters
    Type Name Description
    Bernoulli sample

    Incoming message from sample.

    Double[] probTrue

    Constant value for probTrue.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the choice argument.

    Remarks

    The outgoing message is a distribution matching the moments of choice as the random arguments are varied. The formula is proj[p(choice) sum_(sample) p(sample) factor(sample,choice,probTrue)]/p(choice).

    ChoiceAverageLogarithm(Bernoulli, Double[])

    VMP message to choice.

    Declaration
    public static Bernoulli ChoiceAverageLogarithm(Bernoulli sample, double[] probTrue)
    Parameters
    Type Name Description
    Bernoulli sample

    Incoming message from sample.

    Double[] probTrue

    Constant value for probTrue.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the choice argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except choice. The formula is exp(sum_(sample) p(sample) log(factor(sample,choice,probTrue))).

    SampleAverageConditional(Bernoulli, Double[])

    EP message to sample.

    Declaration
    public static Bernoulli SampleAverageConditional(Bernoulli choice, double[] probTrue)
    Parameters
    Type Name Description
    Bernoulli choice

    Incoming message from choice.

    Double[] probTrue

    Constant value for probTrue.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the sample argument.

    Remarks

    The outgoing message is a distribution matching the moments of sample as the random arguments are varied. The formula is proj[p(sample) sum_(choice) p(choice) factor(sample,choice,probTrue)]/p(sample).

    SampleAverageConditional(Boolean, Double[])

    EP message to sample.

    Declaration
    public static Bernoulli SampleAverageConditional(bool choice, double[] probTrue)
    Parameters
    Type Name Description
    Boolean choice

    Constant value for choice.

    Double[] probTrue

    Constant value for probTrue.

    Returns
    Type Description
    Bernoulli

    The outgoing EP message to the sample argument.

    Remarks

    The outgoing message is the factor viewed as a function of sample conditioned on the given values.

    SampleAverageLogarithm(Bernoulli, Double[])

    VMP message to sample.

    Declaration
    public static Bernoulli SampleAverageLogarithm(Bernoulli choice, double[] probTrue)
    Parameters
    Type Name Description
    Bernoulli choice

    Incoming message from choice.

    Double[] probTrue

    Constant value for probTrue.

    Returns
    Type Description
    Bernoulli

    The outgoing VMP message to the sample argument.

    Remarks

    The outgoing message is the exponential of the average log-factor value, where the average is over all arguments except sample. The formula is exp(sum_(choice) p(choice) log(factor(sample,choice,probTrue))).

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.