Search Results for

    Show / Hide Table of Contents

    Class ArrayFromVectorOp

    Provides outgoing messages for ArrayFromVector(Vector), given random arguments to the function.

    Inheritance
    Object
    ArrayFromVectorOp
    Inherited Members
    Object.Equals(Object)
    Object.Equals(Object, Object)
    Object.GetHashCode()
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Object.ToString()
    Namespace: Microsoft.ML.Probabilistic.Factors
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [FactorMethod(typeof(Factor), "ArrayFromVector", new Type[]{})]
    [Quality(QualityBand.Stable)]
    public static class ArrayFromVectorOp

    Methods

    ArrayAverageConditional<GaussianList>(IList<Gaussian>, VectorGaussian, GaussianList)

    EP message to array.

    Declaration
    public static GaussianList ArrayAverageConditional<GaussianList>(IList<Gaussian> array, VectorGaussian vector, GaussianList result)
        where GaussianList : IList<Gaussian>
    Parameters
    Type Name Description
    IList<Gaussian> array

    Incoming message from array.

    VectorGaussian vector

    Incoming message from vector. Must be a proper distribution. If any element is uniform, the result will be uniform.

    GaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    GaussianList

    result

    Type Parameters
    Name Description
    GaussianList

    The type of the resulting array.

    Remarks

    The outgoing message is a distribution matching the moments of array as the random arguments are varied. The formula is proj[p(array) sum_(vector) p(vector) factor(array,vector)]/p(array).

    Exceptions
    Type Condition
    ImproperMessageException

    vector is not a proper distribution.

    ArrayAverageConditional<GaussianList>(IList<Gaussian>, VectorGaussianMoments, GaussianList)

    EP message to array.

    Declaration
    public static GaussianList ArrayAverageConditional<GaussianList>(IList<Gaussian> array, VectorGaussianMoments vector, GaussianList result)
        where GaussianList : IList<Gaussian>
    Parameters
    Type Name Description
    IList<Gaussian> array

    Incoming message from array.

    VectorGaussianMoments vector

    Incoming message from vector. Must be a proper distribution. If any element is uniform, the result will be uniform.

    GaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    GaussianList

    result

    Type Parameters
    Name Description
    GaussianList

    The type of the resulting array.

    Remarks

    The outgoing message is a distribution matching the moments of array as the random arguments are varied. The formula is proj[p(array) sum_(vector) p(vector) factor(array,vector)]/p(array).

    Exceptions
    Type Condition
    ImproperMessageException

    vector is not a proper distribution.

    ArrayAverageConditionalInit(VectorGaussian)

    Declaration
    public static DistributionStructArray<Gaussian, double> ArrayAverageConditionalInit(VectorGaussian vector)
    Parameters
    Type Name Description
    VectorGaussian vector

    Incoming message from vector.

    Returns
    Type Description
    DistributionStructArray<Gaussian, Double>
    Remarks

    ArrayAverageLogarithm<GaussianList>(VectorGaussian, GaussianList)

    VMP message to array.

    Declaration
    public static GaussianList ArrayAverageLogarithm<GaussianList>(VectorGaussian vector, GaussianList result)
        where GaussianList : IList<Gaussian>
    Parameters
    Type Name Description
    VectorGaussian vector

    Incoming message from vector. Must be a proper distribution. If any element is uniform, the result will be uniform.

    GaussianList result

    Modified to contain the outgoing message.

    Returns
    Type Description
    GaussianList

    result

    Type Parameters
    Name Description
    GaussianList

    The type of the resulting array.

    Remarks

    The outgoing message is a distribution matching the moments of array as the random arguments are varied. The formula is proj[sum_(vector) p(vector) factor(array,vector)].

    Exceptions
    Type Condition
    ImproperMessageException

    vector is not a proper distribution.

    AverageLogFactor(IList<Gaussian>, VectorGaussian)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(IList<Gaussian> array, VectorGaussian vector)
    Parameters
    Type Name Description
    IList<Gaussian> array

    Incoming message from array.

    VectorGaussian vector

    Incoming message from vector.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(IList<Gaussian>, VectorGaussianMoments)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(IList<Gaussian> array, VectorGaussianMoments vector)
    Parameters
    Type Name Description
    IList<Gaussian> array

    Incoming message from array.

    VectorGaussianMoments vector

    Incoming message from vector.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(IList<Gaussian>, Vector)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(IList<Gaussian> array, Vector vector)
    Parameters
    Type Name Description
    IList<Gaussian> array

    Incoming message from array.

    Vector vector

    Constant value for vector.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Double[], VectorGaussian)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(double[] array, VectorGaussian vector)
    Parameters
    Type Name Description
    Double[] array

    Constant value for array.

    VectorGaussian vector

    Incoming message from vector.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Double[], VectorGaussianMoments)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(double[] array, VectorGaussianMoments vector)
    Parameters
    Type Name Description
    Double[] array

    Constant value for array.

    VectorGaussianMoments vector

    Incoming message from vector.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    In Variational Message Passing, the evidence contribution of a deterministic factor is zero. Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    AverageLogFactor(Double[], Vector)

    Evidence message for VMP.

    Declaration
    public static double AverageLogFactor(double[] array, Vector vector)
    Parameters
    Type Name Description
    Double[] array

    Constant value for array.

    Vector vector

    Constant value for vector.

    Returns
    Type Description
    Double

    Zero.

    Remarks

    The formula for the result is log(factor(array,vector)). Adding up these values across all factors and variables gives the log-evidence estimate for VMP.

    LogAverageFactor(IList<Gaussian>, VectorGaussian, VectorGaussian)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(IList<Gaussian> array, VectorGaussian vector, VectorGaussian to_vector)
    Parameters
    Type Name Description
    IList<Gaussian> array

    Incoming message from array.

    VectorGaussian vector

    Incoming message from vector.

    VectorGaussian to_vector

    Outgoing message to vector.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(array,vector) p(array,vector) factor(array,vector)).

    LogAverageFactor(IList<Gaussian>, VectorGaussianMoments, VectorGaussianMoments)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(IList<Gaussian> array, VectorGaussianMoments vector, VectorGaussianMoments to_vector)
    Parameters
    Type Name Description
    IList<Gaussian> array

    Incoming message from array.

    VectorGaussianMoments vector

    Incoming message from vector.

    VectorGaussianMoments to_vector

    Outgoing message to vector.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(array,vector) p(array,vector) factor(array,vector)).

    LogAverageFactor(Double[], VectorGaussian)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double[] array, VectorGaussian vector)
    Parameters
    Type Name Description
    Double[] array

    Constant value for array.

    VectorGaussian vector

    Incoming message from vector.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(vector) p(vector) factor(array,vector)).

    LogAverageFactor(Double[], VectorGaussianMoments)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double[] array, VectorGaussianMoments vector)
    Parameters
    Type Name Description
    Double[] array

    Constant value for array.

    VectorGaussianMoments vector

    Incoming message from vector.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(sum_(vector) p(vector) factor(array,vector)).

    LogAverageFactor(Double[], Vector)

    Evidence message for EP.

    Declaration
    public static double LogAverageFactor(double[] array, Vector vector)
    Parameters
    Type Name Description
    Double[] array

    Constant value for array.

    Vector vector

    Constant value for vector.

    Returns
    Type Description
    Double

    Logarithm of the factor's average value across the given argument distributions.

    Remarks

    The formula for the result is log(factor(array,vector)).

    LogEvidenceRatio(IList<Gaussian>, VectorGaussian, VectorGaussian, IList<Gaussian>)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(IList<Gaussian> array, VectorGaussian vector, VectorGaussian to_vector, IList<Gaussian> to_array)
    Parameters
    Type Name Description
    IList<Gaussian> array

    Incoming message from array.

    VectorGaussian vector

    Incoming message from vector.

    VectorGaussian to_vector

    Outgoing message to vector.

    IList<Gaussian> to_array

    Outgoing message to array.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(array,vector) p(array,vector) factor(array,vector) / sum_array p(array) messageTo(array)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(IList<Gaussian>, VectorGaussianMoments, VectorGaussianMoments, IList<Gaussian>)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(IList<Gaussian> array, VectorGaussianMoments vector, VectorGaussianMoments to_vector, IList<Gaussian> to_array)
    Parameters
    Type Name Description
    IList<Gaussian> array

    Incoming message from array.

    VectorGaussianMoments vector

    Incoming message from vector.

    VectorGaussianMoments to_vector

    Outgoing message to vector.

    IList<Gaussian> to_array

    Outgoing message to array.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(array,vector) p(array,vector) factor(array,vector) / sum_array p(array) messageTo(array)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double[], VectorGaussian)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double[] array, VectorGaussian vector)
    Parameters
    Type Name Description
    Double[] array

    Constant value for array.

    VectorGaussian vector

    Incoming message from vector.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(vector) p(vector) factor(array,vector)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double[], VectorGaussianMoments)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double[] array, VectorGaussianMoments vector)
    Parameters
    Type Name Description
    Double[] array

    Constant value for array.

    VectorGaussianMoments vector

    Incoming message from vector.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(sum_(vector) p(vector) factor(array,vector)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    LogEvidenceRatio(Double[], Vector)

    Evidence message for EP.

    Declaration
    public static double LogEvidenceRatio(double[] array, Vector vector)
    Parameters
    Type Name Description
    Double[] array

    Constant value for array.

    Vector vector

    Constant value for vector.

    Returns
    Type Description
    Double

    Logarithm of the factor's contribution the EP model evidence.

    Remarks

    The formula for the result is log(factor(array,vector)). Adding up these values across all factors and variables gives the log-evidence estimate for EP.

    VectorAverageConditional(IList<Gaussian>, VectorGaussian)

    EP message to vector.

    Declaration
    public static VectorGaussian VectorAverageConditional([SkipIfAllUniform] IList<Gaussian> array, VectorGaussian result)
    Parameters
    Type Name Description
    IList<Gaussian> array

    Incoming message from array. Must be a proper distribution. If all elements are uniform, the result will be uniform.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is a distribution matching the moments of vector as the random arguments are varied. The formula is proj[p(vector) sum_(array) p(array) factor(array,vector)]/p(vector).

    Exceptions
    Type Condition
    ImproperMessageException

    array is not a proper distribution.

    VectorAverageConditional(IList<Gaussian>, VectorGaussianMoments)

    EP message to vector.

    Declaration
    public static VectorGaussianMoments VectorAverageConditional([SkipIfAllUniform] IList<Gaussian> array, VectorGaussianMoments result)
    Parameters
    Type Name Description
    IList<Gaussian> array

    Incoming message from array. Must be a proper distribution. If all elements are uniform, the result will be uniform.

    VectorGaussianMoments result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussianMoments

    result

    Remarks

    The outgoing message is a distribution matching the moments of vector as the random arguments are varied. The formula is proj[p(vector) sum_(array) p(array) factor(array,vector)]/p(vector).

    Exceptions
    Type Condition
    ImproperMessageException

    array is not a proper distribution.

    VectorAverageConditional(Double[], VectorGaussian)

    EP message to vector.

    Declaration
    public static VectorGaussian VectorAverageConditional(double[] array, VectorGaussian result)
    Parameters
    Type Name Description
    Double[] array

    Constant value for array.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of vector conditioned on the given values.

    VectorAverageConditional(Double[], VectorGaussianMoments)

    EP message to vector.

    Declaration
    public static VectorGaussianMoments VectorAverageConditional(double[] array, VectorGaussianMoments result)
    Parameters
    Type Name Description
    Double[] array

    Constant value for array.

    VectorGaussianMoments result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussianMoments

    result

    Remarks

    The outgoing message is the factor viewed as a function of vector conditioned on the given values.

    VectorAverageLogarithm(IList<Gaussian>, VectorGaussian)

    VMP message to vector.

    Declaration
    public static VectorGaussian VectorAverageLogarithm([SkipIfAllUniform] IList<Gaussian> array, VectorGaussian result)
    Parameters
    Type Name Description
    IList<Gaussian> array

    Incoming message from array. Must be a proper distribution. If all elements are uniform, the result will be uniform.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of vector with array integrated out. The formula is sum_array p(array) factor(array,vector).

    Exceptions
    Type Condition
    ImproperMessageException

    array is not a proper distribution.

    VectorAverageLogarithm(IList<Gaussian>, VectorGaussianMoments)

    VMP message to vector.

    Declaration
    public static VectorGaussianMoments VectorAverageLogarithm([SkipIfAllUniform] IList<Gaussian> array, VectorGaussianMoments result)
    Parameters
    Type Name Description
    IList<Gaussian> array

    Incoming message from array. Must be a proper distribution. If all elements are uniform, the result will be uniform.

    VectorGaussianMoments result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussianMoments

    result

    Remarks

    The outgoing message is the factor viewed as a function of vector with array integrated out. The formula is sum_array p(array) factor(array,vector).

    Exceptions
    Type Condition
    ImproperMessageException

    array is not a proper distribution.

    VectorAverageLogarithm(Double[], VectorGaussian)

    VMP message to vector.

    Declaration
    public static VectorGaussian VectorAverageLogarithm(double[] array, VectorGaussian result)
    Parameters
    Type Name Description
    Double[] array

    Constant value for array.

    VectorGaussian result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussian

    result

    Remarks

    The outgoing message is the factor viewed as a function of vector conditioned on the given values.

    VectorAverageLogarithm(Double[], VectorGaussianMoments)

    VMP message to vector.

    Declaration
    public static VectorGaussianMoments VectorAverageLogarithm(double[] array, VectorGaussianMoments result)
    Parameters
    Type Name Description
    Double[] array

    Constant value for array.

    VectorGaussianMoments result

    Modified to contain the outgoing message.

    Returns
    Type Description
    VectorGaussianMoments

    result

    Remarks

    The outgoing message is the factor viewed as a function of vector conditioned on the given values.

    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.