Class ARD
Automatic Relevance Determination Kernel
Inherited Members
Namespace: Microsoft.ML.Probabilistic.Distributions.Kernels
Assembly: Microsoft.ML.Probabilistic.dll
Syntax
[Serializable]
public class ARD : KernelFunction, IKernelFunctionWithParams, IKernelFunction
Constructors
ARD()
Default constructor
Declaration
public ARD()
ARD(Double[], Double)
Constructs an ARD kernel from a vector of log lengths, and a log signal variance
Declaration
[Construction(new string[]{"LogLengths", "LogSigVar"})]
public ARD(double[] logLengths, double logSigVar)
Parameters
Type | Name | Description |
---|---|---|
Double[] | logLengths | |
Double | logSigVar |
Properties
Item[Int32]
Sets or gets a log hyper-parameter by index
Declaration
public override double this[int index] { get; set; }
Parameters
Type | Name | Description |
---|---|---|
Int32 | index |
Property Value
Type | Description |
---|---|
Double |
Overrides
LogLengths
Declaration
public double[] LogLengths { get; }
Property Value
Type | Description |
---|---|
Double[] |
LogSigVar
Declaration
public double LogSigVar { get; }
Property Value
Type | Description |
---|---|
Double |
TypeVersion
The static version for the derived class
Declaration
public override int TypeVersion { get; }
Property Value
Type | Description |
---|---|
Int32 |
Overrides
Methods
EvaluateX(Vector, ref Vector, ref Vector)
Evaluates the kernel for a single vector (which is used for both slots)
Declaration
public override double EvaluateX(Vector x, ref Vector xDeriv, ref Vector logThetaDeriv)
Parameters
Type | Name | Description |
---|---|---|
Vector | x | Vector |
Vector | xDeriv | Derivative of the kernel value with respect to x |
Vector | logThetaDeriv | Derivative of the kernel value with respect to the log hyper-parameters |
Returns
Type | Description |
---|---|
Double |
Overrides
EvaluateX1X2(Vector, Vector, ref Vector, ref Vector)
Evaluates the kernel for a pair of vectors
Declaration
public override double EvaluateX1X2(Vector x1, Vector x2, ref Vector x1Deriv, ref Vector logThetaDeriv)
Parameters
Type | Name | Description |
---|---|---|
Vector | x1 | First vector |
Vector | x2 | Second vector |
Vector | x1Deriv | Derivative of the kernel value with respect to x1 input vector |
Vector | logThetaDeriv | Derivative of the kernel value with respect to the log hyper-parameters |
Returns
Type | Description |
---|---|
Double |
Overrides
InitialiseFromData(IList<Vector>, Vector)
Initialises the parameters from data
Declaration
public void InitialiseFromData(IList<Vector> X, Vector y)
Parameters
Type | Name | Description |
---|---|---|
IList<Vector> | X | X data - initialises lengths |
Vector | y | y data - initialises signal standard deviation |
Read(StreamReader)
Reads the parameters in from a stream
Declaration
public override void Read(StreamReader sr)
Parameters
Type | Name | Description |
---|---|---|
StreamReader | sr | Stream reader |
Overrides
SetupParams(Double[], Double)
Sets up names and values of parameters
Declaration
public void SetupParams(double[] logLengths, double logSigVar)
Parameters
Type | Name | Description |
---|---|---|
Double[] | logLengths | Log of the lengths |
Double | logSigVar | Log of the signal variance |