Search Results for

    Show / Hide Table of Contents

    Class GaussianProcess

    A base class for Gaussian process distributions

    Inheritance
    Object
    GaussianProcess
    Implements
    IGaussianProcess
    Sampleable<IFunction>
    Inherited Members
    Object.Equals(Object, Object)
    Object.GetType()
    Object.MemberwiseClone()
    Object.ReferenceEquals(Object, Object)
    Namespace: Microsoft.ML.Probabilistic.Distributions
    Assembly: Microsoft.ML.Probabilistic.dll
    Syntax
    [Serializable]
    [DataContract]
    public class GaussianProcess : IGaussianProcess, Sampleable<IFunction>

    Constructors

    GaussianProcess(IFunction, IKernelFunction)

    Constructor

    Declaration
    [Construction(new string[]{"mean", "kernel"})]
    public GaussianProcess(IFunction mean, IKernelFunction kernel)
    Parameters
    Type Name Description
    IFunction mean

    Mean function

    IKernelFunction kernel

    Kernel function

    Fields

    kernel

    Covariance function

    Declaration
    [DataMember]
    public IKernelFunction kernel
    Field Value
    Type Description
    IKernelFunction

    mean

    Mean function

    Declaration
    [DataMember]
    public IFunction mean
    Field Value
    Type Description
    IFunction

    Methods

    Covariance(Vector, Vector)

    Predictive covariance at a given pair of points

    Declaration
    public double Covariance(Vector x, Vector y)
    Parameters
    Type Name Description
    Vector x
    Vector y
    Returns
    Type Description
    Double

    Covariance(IList<Vector>)

    Predictive coariance at a given list of points

    Declaration
    public PositiveDefiniteMatrix Covariance(IList<Vector> XList)
    Parameters
    Type Name Description
    IList<Vector> XList

    List of inputs

    Returns
    Type Description
    PositiveDefiniteMatrix

    Predictive covariance

    Equals(Object)

    Declaration
    public override bool Equals(object obj)
    Parameters
    Type Name Description
    Object obj
    Returns
    Type Description
    Boolean
    Overrides
    Object.Equals(Object)

    GetHashCode()

    Declaration
    public override int GetHashCode()
    Returns
    Type Description
    Int32
    Overrides
    Object.GetHashCode()

    Joint(IList<Vector>)

    Predictive distribution at a given list of points

    Declaration
    public VectorGaussian Joint(IList<Vector> XList)
    Parameters
    Type Name Description
    IList<Vector> XList

    List of inputs

    Returns
    Type Description
    VectorGaussian

    Predictive distribution

    Marginal(Vector)

    Predictive distribution at a given point

    Declaration
    public Gaussian Marginal(Vector X)
    Parameters
    Type Name Description
    Vector X

    Input

    Returns
    Type Description
    Gaussian

    Predictive distribution

    Mean(Vector)

    Mean at a given point

    Declaration
    public double Mean(Vector X)
    Parameters
    Type Name Description
    Vector X
    Returns
    Type Description
    Double

    Mean(IList<Vector>)

    Mean at a given list of points

    Declaration
    public Vector Mean(IList<Vector> XList)
    Parameters
    Type Name Description
    IList<Vector> XList

    List of inputs

    Returns
    Type Description
    Vector

    Predictive mean vector

    Sample()

    This base class just returns the mean function

    Declaration
    public IFunction Sample()
    Returns
    Type Description
    IFunction

    Sample(IFunction)

    This base class just returns the mean function

    Declaration
    public IFunction Sample(IFunction result)
    Parameters
    Type Name Description
    IFunction result
    Returns
    Type Description
    IFunction

    ToString()

    Declaration
    public override string ToString()
    Returns
    Type Description
    String
    Overrides
    Object.ToString()

    Variance(Vector)

    Predictive Variance at a given point

    Declaration
    public double Variance(Vector X)
    Parameters
    Type Name Description
    Vector X

    Input

    Returns
    Type Description
    Double

    Predictive variance

    Implements

    IGaussianProcess
    Sampleable<T>
    In This Article
    Back to top Copyright © .NET Foundation. All rights reserved.