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Abstract  

This document provides a detailed, sample-based introduction to the basics of 
Microsoft® Infer.NET programming.  

For a review of the basic concepts of probabilistic programming and Infer.NET, see 
“An Introduction to Infer.NET.”  
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Introduction 

This document provides a detailed, sample-based introduction to writing probabilistic 
programs with Microsoft® Infer.NET. If you are unfamiliar with probabilistic 
programming, we recommend that you first read “An Introduction to Infer.NET,” 
which is listed in Resources, for a discussion of the basic concepts of probabilistic 
programming and introduction to the Infer.NET platform.  

The core of this document walks you through the code of a series of increasingly 
sophisticated Infer.NET applications. The walkthroughs describe how the applications 
use the core features of Infer.NET programming and include some discussion of the 
conceptual and mathematical underpinnings.  

Walkthrough Scenario. All the applications discussed in this document are based on 
the following scenario: 

• You and several co-workers bicycle to work every day. 

• An individual cyclist’s travel time varies randomly from day to day, so its value is 
uncertain. 

• The travel time’s uncertainty is represented by a probability distribution that 
defines the average travel time and how much it varies. 

• The application will learn this distribution from several observed travel times and 
use that knowledge to make predictions about future travel times. 

 

Walkthrough Samples. The walkthroughs cover the following sample applications: 

• CyclingTime1 learns a single cyclist’s travel time distribution, and uses that 
information to predict future travel times. 

• CyclingTime2 is a restructured version of CyclingTime1, which introduces a 
standard practice for implementing models that is used in the subsequent 
applications.  

• CyclingTime3 allows for the possibility of an unexpected event, and models travel 
time as a mixture of two distributions. 

• CyclingTime4 shows how to use evidence to select the best model. 

• CyclingTime5 adds a second cyclist, and describes how to construct more 
complex models. 

 



Infer.NET 101 – 5  

 

About the Samples. The samples are all contained in a single Microsoft Visual 
Studio®-based solution, InferNET101, which can be found in the Examples folder of 
the Infer.NET source tree. The solution consists of the following: 

• InferNet101.cs 
A simple console application that runs the five samples in order. 

• RunCyclingSamples.cs 
A set of five static methods named RunCyclingTimeN, one for each sample. The 
methods contain the corresponding sample’s core Infer.NET code, which creates 
and trains the model, makes predictions, and so on. 

• CyclingTimeN, where N ranges from 2 to 5 
The Infer.NET model for CyclingTime1 is implemented in RunCyclingSamples.cs. 
The final four samples implement their models as separate classes, which are in 
the corresponding CyclingTimeN.cs file. 

 

For general directions on how to build and run Infer.NET applications, see 
Appendix C. 

Prerequisites. This document assumes that you are familiar with the basic concepts 
and terminology of probabilistic programming, as described in “An Introduction to 
Infer.NET”, which is listed in “Resources” later in this document.  

You should also have at least the following:  

• Basic C# programming skills. 

This prerequisite is especially important because otherwise you might have 
difficulty distinguishing between standard C# code and Infer.NET-specific code.  

• Familiarity with using Microsoft Visual Studio to program Microsoft .NET 
Framework applications with C#.  

• Familiarity with basic statistics. 

Familiarity with Bayesian inference is helpful but not required. 
 

Terminology. For definitions of terminology that is specific to Infer.NET and is used in 
this document, see Appendix A.  

Installation. For system requirements and installation directions see Appendix B. 
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Infer.NET Basics 

To help you get oriented before starting on the first application, this section briefly 
describes the basic structure and key elements of the CyclingTimeN samples. The 
terms and concepts are discussed in more detail as the document proceeds.  

Create a Model 

An Infer.NET application is built around a probabilistic model, which defines the 
random variables and how they are related. 

A random variable is essentially an extension of a standard type such as double or int, 
which allows the type to have uncertain values. Infer.NET represents random 
variables as instances of the Variable<T> class, which is in the 
Microsoft.ML.Probabilistic.Models namespace. T is called the variable’s domain type: 

• Discrete random variables have a specified set of possible values and a bool or int 
domain type. 

• Continuous random variables have a range of possible values and a double 
domain type. 

 

A random variable is defined by a probability distribution—commonly abbreviated to 
distribution—which assigns probabilities to the variable’s possible values. Initially, a 
random variable is defined by a prior distribution—commonly abbreviated to prior—
which represents your understanding of the variable’s value before making any 
observations. 

Note: Creating a random variable can involve as many as three separate steps. For 
example: 

1. C# declaration: Variable<bool> x; 

2. C# definition: x = Variable<bool>.New(); 

3. Statistical or model definition: x = Variable<bool>.Random(someDist); 
 

In the language of statistical inference, “definition” or “define” refers to the variable’s 
distribution, and that is how the term is generally used in this paper. However, in 
cases where Steps 2 and 3 are separate statements, we clarify the distinction by using 
“statistical definition” or “statistically define” for Step 3. 

There are a variety of ways to define relationships between random variables, which 
are discussed later in this document. 

Observe Random Variables 

You can perform computations on the model at this point, but they usually aren’t 
very interesting. The results merely reflect the values you chose for the priors. To 
learn something new, you observe one or more of the model’s random variables by 
assigning values to their ObservedValue properties. At this point, the variables are no 
longer random; they are effectively standard types with a fixed value. 



Infer.NET 101 – 7  

 

Infer Posteriors 

Before you make any observations, the model’s priors directly or indirectly define a 
particular random variable’s distribution. After making some observations on one or 
more other variables, you know more about that variable’s value so it has a new 
distribution called the posterior distribution—commonly abbreviated to posterior. A 
posterior incorporates the information from the prior and the observations, and 
represents your new and presumably improved knowledge of the variable’s value. 

You compute posteriors by using an instance of the Infer.NET inference engine, which 
performs all the numerical heavy lifting. The inference engine is implemented as the 
InferenceEngine class in the Microsoft.ML.Probabilistic.Models namespace. 

The inference engine computes the posterior distribution for a specified random 
variable by “summing out” the effect of the model’s other random variables. In 
general, this type of distribution is called the variable’s marginal distribution, which is 
commonly abbreviated to marginal. When you query the inference engine for a 
random variable’s marginal after observing one or more of the model’s other random 
variables, the marginal that the engine returns is a posterior—an update of the 
variable’s prior, conditioned by the new information from the observations. For a 
more detailed discussion of marginals, priors, and posteriors, see “An Introduction to 
Infer.NET.” 

Use the Posteriors 

You can use posteriors for a variety of purposes. One obvious use is to predict the 
future behaviour of the variable. However, with only a few observations, the 
posterior might not accurately reflect the variable’s real behaviour and the 
predictions might not be very accurate. You can improve your understanding by 
making additional observations, and incorporating that information into the 
variable’s distribution, as follows: 

1. Use the posterior as the variable’s new prior. 

2. Make some additional observations. 

3. Compute a new posterior. 
 

The new posterior incorporates the initial prior and all observations. You can 
continue this process indefinitely. After a sufficient number of observations, the 
posterior should better reflect the variable’s real value. 

What’s Next? 

A distribution is controlled by one or more parameters. Sometimes you can make 
reasonable a priori estimates of the parameter values, but they rarely match 
subsequent observations exactly. Sometimes you have little or no prior knowledge. In 
other words, the parameter values are uncertain. 

From a Bayesian perspective everything, including distribution parameters, is 
uncertain and can be treated as a random variable. You assign a prior to the variable 
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that reflects your initial understanding—or lack of understanding—of the parameter’s 
value and use observations and probabilistic programming to learn distributions over 
the value. This general approach is a form of parameter learning, which is introduced 
by CyclingTime1 and is used by all the walkthroughs in this example. 



Infer.NET 101 – 9  

 

Chapter 1   

CyclingTime1 Application: Basic Parameter 

Learning 

The section demonstrates the basics of how to use Infer.NET to implement parameter 
learning. CyclingTime1 is a simple application that learns an individual cyclist’s travel 
time distribution based on three days of observed travel times. This process is 
sometimes referred to as “training the model.” CyclingTime1 then uses the trained 
model to predict tomorrow’s travel time. 

CyclingTime1 Model 

A cyclist’s travel time varies from day to day with the individual times distributed 
about some average value. You can represent these travel times statistically as a set 
of random samples from a distribution that matches the data. CyclingTime1 uses a 
Gaussian distribution to represent the travel time distribution, and characterizes the 
distribution by the following two parameters.  

• The distribution’s mean is the cyclist’s average travel time. 

• The distribution’s precision determines how much the travel time varies from one 
day to the next, and reflects factors such as the day to day variations in traffic 
conditions. 

It is convenient to think of precision as a measure of the traffic “noise” with 
greater precision corresponding to less day-to-day variation. 

 

Note: You might be more familiar with the standard deviation, σ, as a measure of the 
width of a Gaussian distribution. It is often more mathematically convenient to use 
one of the following related values: 

• Variance: σ2 

• Precision: 1/σ2 
 

For a more detailed discussion, see “Gaussian Distribution” in Chapter 2, later in this 
document. 
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Because the mean and precision are both uncertain and continuous, CyclingTime1 
represents them by double random variables. 

• averageTime represents the mean, and its uncertainty is represented by another 
Gaussian distribution. 

• trafficNoise represents the precision and its uncertainty is represented by a 
Gamma distribution. 

 

The Gaussian and Gamma distributions and the reasons for using them are discussed 
later. 

CyclingTime1 represents the travel times that are observed by using three random 
variables, travelTimeMonday, travelTimeTuesday, and travelTimeWednesday. All 
three variables are assumed to be drawn from the same Gaussian travel time 
distribution. 

The final piece of the puzzle is to define the relationship between averageTime, 
trafficNoise, and the three travelTimeX random variables. Probabilistic programming 
typically uses a generative model to define the relationships between the random 
variables. A generative model describes how the observed data is generated from the 
underlying model parameters. Although it is sometimes helpful to think of a 
generative model as a set of cause-effect relationships, generative models are not 
necessarily causal. 

For CyclingTime1, the generative process is: 

1. Sample the averageTime and trafficNoise random variables to generate mean 
and precision values for this cyclist. 

2. Create a Gaussian distribution over travel times by using the mean and precision 
values from Step 1. 

3. Sample the Gaussian distribution from Step 2 to generate the travel time value 
travelTimeMonday. 

4. Repeat step 3 for travelTimeTuesday and travelTimeWednesday. 
 

Figure 1 shows a graphical representation of the CyclingTime1 model, called a factor 
graph. Factor graphs are discussed in more detail later, but briefly: 

• Ellipses indicate random variables. 

• Shaded ellipses indicate observed variables. 

• Filled squares indicate factors, which represent the associated variable’s 
distribution. 

• Arrows show the direction of the generative process. 
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Figure 1. CyclingTime1 factor graph 

Although the generative process has a well-defined direction, inference can work in 
any direction. You observe one or more random variables, and the inference engine 
uses the observations and the model to infer the distributions of the remaining 
random variables. In Figure 1, the training data represented by the three 
travelTimesXYZ variables is observed, and the inference engine uses the observations 
and model to infer averageTime and trafficNoise. This is opposite to the model’s 
generative direction, so in this case inference propagates information backwards 
from the observations.  

There actually two versions of the CyclingTime1 model, which correspond to whether 
we want to learn the parameters or to predict tomorrow’s time. Figure 1 shows the 
model for training—that is, learning the parameters. The prediction model has the 
same structure as the training model but uses the computed averageTime and 
trafficNoise values to infer tomorrowsTime. In this case, the inference engine 
propagates information from the parameters forwards. 

You will see later how these two tasks can be implemented with a single model–the 
only difference being which variables are inferred. However, to make the code more 
explicitly correspond to the two tasks we use an explicit ‘tomorrowsTime’ prediction 
variable in the prediction model. 

CyclingTime1 Application 

The following example shows the complete CyclingTime1 source, which is annotated 
for later reference. The using statements are for namespaces that used by most 
Infer.NET applications. It is implemented as the RunCyclingTime1 static method in 
RunCyclingSamples.cs. 

Listing 1: CyclingTime1 
using System; 

using Microsoft.ML.Probabilistic.Models; 

using Microsoft.ML.Probabilistic.Distributions; 

 

public static void RunCyclingTime1() 

{ 

  //[1] The model 
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  Variable<double> averageTime = Variable.GaussianFromMeanAndPrecision(15, 0.01); 

  Variable<double> trafficNoise = Variable.GammaFromShapeAndScale(2.0, 0.5); 

 

  Variable<double> travelTimeMonday = 

              Variable.GaussianFromMeanAndPrecision(averageTime, trafficNoise); 

  Variable<double> travelTimeTuesday = 

              Variable.GaussianFromMeanAndPrecision(averageTime, trafficNoise); 

  Variable<double> travelTimeWednesday = 

              Variable.GaussianFromMeanAndPrecision(averageTime, trafficNoise); 

 

  //[2] Train the model 

  travelTimeMonday.ObservedValue = 13; 

  travelTimeTuesday.ObservedValue = 17; 

  travelTimeWednesday.ObservedValue = 16; 

 

  InferenceEngine engine = new InferenceEngine(); 

 

  Gaussian averageTimePosterior = engine.Infer<Gaussian>(averageTime); 

  Gamma trafficNoisePosterior = engine.Infer<Gamma>(trafficNoise); 

 

  Console.WriteLine("averageTimePosterior: " + averageTimePosterior); 

  Console.WriteLine("trafficNoisePosterior: " + trafficNoisePosterior); 

 

  //[3] Make predictions 

 

  //Add a prediction variable and retrain the model 

  Variable<double> tomorrowsTime = 

             Variable.GaussianFromMeanAndPrecision(averageTime, trafficNoise); 

 

  Gaussian tomorrowsTimeDist = engine.Infer<Gaussian>(tomorrowsTime); 

  double tomorrowsMean = tomorrowsTimeDist.GetMean(); 

  double tomorrowsStdDev = Math.Sqrt(tomorrowsTimeDist.GetVariance()); 

 

  // Write out the results. 

  Console.WriteLine("Tomorrows predicted time: {0:f2} plus or minus {1:f2}", 

                    tomorrowsMean, tomorrowsStdDev); 

 

  // Ask other questions of the model  

  double probTripTakesLessThan18Minutes = engine.Infer<Bernoulli>(tomorrowsTime < 

18.0).GetProbTrue(); 

  Console.WriteLine("Probability that the trip takes less than 18 min: {0:f2}", 

                    probTripTakesLessThan18Minutes); 

} 

 
 

The following sections describe how CyclingTimes1 is implemented and are keyed to 
the numbered comments. 

Note: The syntax of Infer.NET code can sometimes appear complex. Although it is 
useful to think of Infer.NET as a language for probabilistic programming, the 
examples are C# code that calls into the Infer.NET application programming interface 
(API). The advantage of an API is that you can mix probabilistic and non-probabilistic 
code, which allows you to embed Infer.NET directly into applications. As an API, 
Infer.NET is restricted to using the constructs that are provided by C# and other high-
level .NET languages and makes heavy use of .NET generics. When you are learning 
Infer.NET, it is important to focus on the underlying principles, and not get distracted 
by the syntax. 
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[1] Create the Model 

The initial part of CyclingTime1 defines the training model. 

Create averageTime and TrafficNoise, and Specify Initial Priors 

The first step in the training phase is to create random variables to represent 
averageTime and trafficNoise. Both variables have a continuous range of possible 
values, so they are represented by double random variables. Before running 
inference, you must specify the variables’ priors. 

A prior represents your best understanding of a random variable before observing 
one or more of the model’s other random variables. After making the observations, 
you can use the prior, the model, and the observations to compute the variable’s 
posterior, which represents your improved understanding of the variable’s behaviour. 
You can then use the posterior to predict the variable’s future behaviour, or as the 
prior for the next set of observations, and so on. 

One obvious issue is what to use for the initial prior’s parameter values. In many 
cases, you can assume that distribution parameters are based on a general 
understanding of the variable’s behaviour. For example, an experienced cyclist should 
be able to estimate how long a particular trip should take and how much the time will 
vary from day to day. Such an estimate is probably not exact, but it’s likely to be fairly 
close and you specify a precision value that appropriately represents the uncertainty. 
The initial prior is an assumption, which might seem a bit fuzzy, but keep in mind that 
all forms of statistical analysis make assumptions at some level. With Bayesian 
inference, assumptions are explicit, and they are handled in a principled way from 
that point on. 

To specify an initial prior, define the associated random variable by using the 
appropriate distribution with a reasonable set of parameter values. The simplest way 
to handle this task is to use one or more of the Variable class’s static factory 
methods. If the variable is scalar—as opposed to an array of variables—you can 
typically create the random variable and provide the statistical definition with a single 
method call. 

The following example shows how CyclingTime1 uses factory methods to create 
averageTime and trafficNoise, and give them their initial priors. 

Variable<double> averageTime = Variable.GaussianFromMeanAndPrecision(15, 0.01); 

Variable<double> trafficNoise = Variable.GammaFromShapeAndScale(2.0, 0.5); 

 
 

CyclingTime1 uses the following parameter values for the averageTime initial prior: 

• The mean is set to 15, based on general cycling experience. 

A cyclist usually has a fairly good idea how long a particular route will take. The 
specified mean reflects that informed understanding and represents a valid if 
somewhat uncertain understanding of the variable.  

• The precision is set to 0.01. 

The mean is basically an educated guess, and the precision value represents how 
precise the cyclist believes that guess to be. Here, the small precision indicates a 
large initial uncertainty. 
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The trafficNoise parameters are set to similarly reasonable values. The reasons for 
choosing these particular distributions and the meaning of the trafficNoise 
parameters are discussed later in this document. 

As a practical matter, the choice of an initial prior is significant only if you have a 
small number of observations. As the number of observations increases, the influence 
of the initial prior on the posterior declines. With enough observations—often a 
relatively low number—the posterior distribution is effectively determined by the 
observations. In fact, applications often just use a “neutral” initial prior—such as 
assigning equal probabilities to all possible values—and let the observations 
determine the correct distribution. 

Create and Define the Travel Times 

Each observed value is represented by a random variable. Each travel time must 
therefore be represented by a double random variable—a Variable<double> 
object—that is governed by a continuous distribution. For this scenario, a Gaussian 
distribution is the obvious choice. 

The final step in creating the training model is to define the three variables that are to 
be observed: 

Variable<double> travelTimeMonday = 

         Variable.GaussianFromMeanAndPrecision(averageTime, trafficNoise); 

Variable<double> travelTimeTuesday = 

         Variable.GaussianFromMeanAndPrecision(averageTime, trafficNoise); 

Variable<double> travelTimeWednesday = 

         Variable.GaussianFromMeanAndPrecision(averageTime, trafficNoise); 
 

Defining the three variables by using averageTime and trafficNoise as parameters 
provides the link between the variables that is shown Figure 1. 

[2] Train the Model  

To complete the training process, CyclingTime1 observes the training data and infers 
posteriors for averageTime and trafficNoise. The posteriors essentially summarize the 
results of the training process in a form that can be used for further computations, 
such as predicting future travel times, or as priors for additional training. 

You observe data by assigning a value to the random variable’s ObservedValue 
property. CyclingTime1 observes the training data as follows: 

travelTimeMonday.ObservedValue = 13; 

travelTimeTuesday.ObservedValue = 17; 

travelTimeWednesday.ObservedValue = 16; 

 
 

At this point, the values of the three travel time variables are fixed, and the variables 
are no longer random. 

All the details are in place now, but so far, Infer.NET has simply used the modelling 
code to construct an internal representation of the model. No computation takes 
place until you query the inference engine for a random variable’s marginal.  

To compute posteriors, CyclingTime1 creates an instance of the inference engine and 
queries it for the averageTime and trafficNoise marginals. To query for a random 
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variable’s marginal, you pass the variable to the InferenceEngine.Infer<T> method, 
where T is the variable’s distribution type.  

When you call Infer<T>, the inference engine: 

1. Uses a model compiler to generate C# code, based on the model and the 
inference algorithm, to compute the requested marginal. 

2. Uses the .NET C# compiler to compile the generated code to an executable. 

3. Runs the executable to compute the requested marginal. 

4. Returns the marginal to the application as a distribution object. 
 

If you made observations before running the query, the engine uses the observations, 
the prior, and the model to infer a marginal for the specified random variable that is 
consistent with the training data and the prior. The returned marginals are therefore 
posteriors, by definition. 

CyclingTime1 queries for the travelTimes marginals as follows: 

InferenceEngine engine = new InferenceEngine(); 

Gaussian averageTimePosterior = engine.Infer<Gaussian>(averageTime); 

Gamma trafficNoisePosterior = engine.Infer<Gamma>(trafficNoise); 

 
 

In this case, the inference engine uses the default inference algorithm, which is 
expectation propagation. You can also specify other algorithms, as discussed later. 

The inference engine returns the inferred posteriors, averageTimePosterior and 
trafficNoisePosterior, and CyclingTime1 prints the results, as follows: 

averageTimePosterior: Gaussian(15.33, 1.32) 
trafficNoisePosterior: Gamma(2.242, 0.2445)[mean=0.5482] 
 

If you just consider the means of these two posterior distributions, the mean of the 
average travel time is 15.33 and the mean of the traffic noise is 0.5482. However 
both the average travel time and the traffic noise have uncertainty, as reflected by 
the full distributions. The uncertainty in these estimates will decrease with more 
observations. 

[3] Use the Trained Model for Prediction 

The first step in predicting a travel time from the trained model is to define a 
prediction model. CyclingTime1 predicts a single travel time, which can be 
represented by a single ordinary random variable, tomorrowsTime, as follows: 

Variable<double> tomorrowsTime = 

    Variable.GaussianFromMeanAndPrecision(averageTime, trafficNoise); 

 
 

To connect tomorrowsTime to the trained model, CyclingTime1 statistically defines 
tomorrowsTime by using a Gaussian distribution with: 

• The distribution’s mean parameter set to averageTime. 

• The distribution’s precision parameter set to the trafficNoise. 
 

The prediction model is effectively the training model with an additional random 
variable. 
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Predicting tomorrows travel time is straightforward: query the inference engine for 
the tomorrowsTime marginal.  

Gaussian tomorrowsTimeDist = engine.Infer<Gaussian>(tomorrowsTime); 

double tomorrowsMean = tomorrowsTimeDist.GetMean(); 

double tomorrowsStdDev = Math.Sqrt(tomorrowsTimeDist.GetVariance()); 

 

Console.WriteLine("Tomorrows predicted time: {0:f2} plus or minus {1:f2}", 

                  tomorrowsMean, tomorrowsStdDev); 

double probTripTakesLessThan18Minutes = 

            engine.Infer<Bernoulli>(tomorrowsTime < 18.0).GetProbTrue(); 

Console.WriteLine("Probability that the trip takes less than 18 min: {0:f2}", 

                  probTripTakesLessThan18Minutes); 

 
 

When you query for the tomorrowsTime marginal, the inference engine: 

1. Compiles the prediction model. 

Adding tomorrowsTime changes the original training model, so the model must 
be compiled before running the computations. 

2. Uses the observed values for travelTimeMonday, travelTimeTuesday, and 
travelTimeWednesday to the train the model. 

averageTime and trafficNoise are now defined by their posteriors. 

3. Uses the trained model to compute the tomorrowsTime posterior. 
 

This procedure performs the entire computation from the beginning, including the 
computations that were performed earlier for the training model. Chapter 3 
introduces a more efficient way to handle this process. 

The remaining code shows how to use the Gaussian object’s methods plus some 
utility methods to obtain various types of information, as follows: 

• Gaussian.GetMean returns the distribution’s mean. 

• Gaussian.GetVariance returns the distribution’s variance. 

CyclingTime1 converts the variance to the equivalent standard deviation, which is 
a little easier to visualize. 

The results are as follows: 

Tomorrows predicted time: 15.33 plus or minus 2.15 
 

The tomorrowsTime prediction is a distribution, not just a number, so you can use it 
to ask some relatively sophisticated questions. The final line queries the model for 
the probability that tomorrow’s trip takes less than 18 minutes. 

The results are as follows: 

Probability that the trip takes less than 18 min: 0.89 
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Chapter 2   

Digressions: Gaussian and Gamma 

Distributions, and Factor Graphs 

Gaussian and Gamma Distributions 

CyclingTime1 uses two continuous distributions: the Gaussian and Gamma 
distributions. This section provides some details. 

Gaussian Distribution 

The Gaussian distribution—sometimes referred to as a normal distribution—is a 
continuous distribution that defines a classic bell curve. The mathematical definition 
of a Gaussian distribution for variable x is as follows: 

𝒩(𝑥) =  
1

√2𝜋𝜎2
𝑒𝑥𝑝 {

1

2𝜎2 
(𝑥 − 𝜇)2} 

Where: 

• x represents a continuous range of values from which a sample of the distribution 
can be drawn.  

Formally, x ranges from [-∞, ∞], but as a practical matter 𝒩 is effectively zero 
except near its mean value (x = µ), so Gaussians are often used to represent 
variables with more limited ranges. 

• 𝒩 is the probability density for a given value of x. 

The probability density is the relative probability that a sample will be drawn for a 
particular value of x. If point A’s probability density is twice point B’s probability 
density, then point A is twice as likely to be sampled. 

 

The distribution is governed by two parameters: 

• µ is the mean value of x, and is also the maximum value of 𝒩. 

• σ is a measure of the distribution’s width known as the “standard deviation.” 
 

Instead of σ, width is often expressed in terms of two related parameters, which are 
typically more mathematically convenient: 

• The variance, which is σ2. 
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• The precision, which is 1/σ2. 
 

The exponential function’s prefix is a normalization constant, which ensures that the 
integral of the distribution over its range is 1.0.  

Figure 2 shows a graph of a Gaussian for typical values of µ and σ. 
 

 

Figure 2. Gaussian distribution 

For more information about Gaussian distributions, see “Gaussian Distribution” or 
“Pattern Recognition and Machine Learning” in “Resources.” 

Gamma Distribution 

The Gamma distribution can be used for any continuous random variable that has a 
range of [0, ∞]. With probabilistic programming, the Gamma distribution is most 
commonly used to define random variables such as trafficNoise that represent a 
Gaussian distribution’s precision parameter. 

The mathematical definition of a Gamma distribution for variable x is as follows: 

𝑃(𝑥) =  𝑥𝑘−1
𝑒−𝑥/𝜃

𝜃𝑘Γ(𝑘)
 

Where: 

• x represents a continuous range of values in the range [0, ∞] from which a sample 
of the distribution can be drawn.  

• 𝑃 is the probability density for a given value of x. 

• Γ is a gamma function. If k is an integer, Γ(k) = (k-1)! . 
 

The distribution is governed by two parameters, both of which are positive: 

• k is called the shape parameter. 

• θ is called the scale parameter. 
 

The Gamma distribution can also be defined by shape (α) and rate (β) parameters, 
where α = k and β = 1/θ. 

Figure 3 shows a Gamma distribution for some representative shape and scale values. 

2σ 

µ 0
X

𝒩 
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Figure 3. Gamma distribution 

For more details, see “Gamma Distribution” in “Resources.” 

Factors and Factor Graphs 

Probabilistic programs are typically built around a generative model that describes 
the relationships between the system’s random variables and so defines the joint 
probability distribution over these variables. For more discussion of joint probability 
distributions, see “An Introduction to Infer.NET.” 

The richest and most flexible ways to represent models are mathematical or 
programmatic, and that is the only way that some models can be expressed. 
However, many models can be represented graphically, typically as a factor graph or 
as a related graph called a Bayesian network. Graphs provide a visual representation 
of the dependency structure among the variables, and can be useful for constructing 
and understanding probabilistic models and implementing the associated code.  

For more discussion of graphical models, see Chapter 8 of “Pattern Recognition and 
Machine Learning.” 

This document uses factor graphs, which represent the factorization of the model’s 
joint probability distribution; the model is the product of all the factors. Factor graphs 
are a natural way to represent complex conditional relationships between variables 
and are straightforward to represent with Infer.NET code.  

Graphically, factor graphs consist of three node types: 

• Open circles or ovals to represent random variables. 

• Filled circles to represent observed variables. 

• Filled squares to represent factors. 
 

By convention, generation starts at the top of the graph and proceeds downward. 
The nodes are linked by edges, which are represented by lines. To show the 
generative direction the edges that originate from the bottom of a factor are arrows 
that point to the associated random variable node. Factors also usually have one or 

k = 1, θ = 2.0

k = 2, θ = 2.0

k = 5, θ = 1.0

0.5
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X
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more parameters, such as a Gaussian factor’s mean and precision values. The random 
variables that represent the parameters are connected by edges to the factor’s top.  

A stochastic factor such as a Gaussian, represents the distribution of the random 
variable that the edge points to, conditioned by the factor’s input variables. Other 
types of factors serve other purposes: 

• Deterministic factors represent operations such as summing two existing random 
variables to produce a new random variable. 

• Constraint factors constrain existing random variables in various ways, such as 
requiring a variable to take only positive values. 

• Unary factors do not have edges connected to their tops and typically represent 
distribution factors with fixed parameter values. 

 

For more discussion of factors and how they are related to distributions, see “Factors 
and Constraints” in “Resources.” 

Figure 1 is actually a somewhat simplified version of the CyclingTime1 training graph. 
Figure 4 shows the complete graph, which explicitly shows the unary factors that 
represent the averageTime and trafficNoise priors. 

Stochastic
Factors

(Gaussian)

travelTimeTuesdaytravelTimeMonday travelTimeWednesday

trafficNoiseaverageTime

Gaussian(15, 0.01) Gamma(2.0, 0.5)

Unary
Factors

 

Figure 4. Complete CyclingTime1 training graph 

Figure 4 contains the following variables and factors: 

• The two variables at the top of the graph, averageTime and trafficNoise, are 
random variables that represent the Gaussian distribution’s mean and precision 
parameters. 

The associated Gaussian and Gamma unary factors represent the averageTime 
and trafficNoise variables’ priors, respectively. 

• The three variable at the bottom of the graph are the observed travel time 
variables, which represent the cyclist’s travel time data. 

The Gaussian factors in the centre of the graph represent the distribution that 
defines the three travel time variables. The factor produces a Gaussian 
distribution based on averageTime and trafficNoise. 

You can construct much more complex and sophisticated factor graphs, especially for 
systems with many random variables, and you can map them fairly directly to 
equivalent Infer.NET code. One of prime benefits of Infer.NET is that it provides 
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applications with a straightforward way to construct complex and sophisticated 
models from simple building blocks. The inference engine then handles the task of 
performing inference computations on the complex model.  

For more discussion of factor graphs, see Chapter 9, “Digression: Functions of 
Random Variables,” later in this document. 
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Chapter 3   

CyclingTime2 Application: Restructuring 

CyclingTime1 

CyclingTime1 demonstrated the basics of parameter learning. Although the 
application’s simple structure is useful for introducing basic concepts, it can’t be 
readily extended to handle more sophisticated scenarios. In particular, CyclingTime1 
implemented everything in a single method, which is not ideal for production-level 
applications. 

The preferred approach—which is used by CyclingTime2—is to encapsulate the 
modelling code in a separate class. In some cases, it is helpful to implement separate 
classes for the training and prediction models. In others, you can use a single class, 
but the training and prediction models should be separate class instances, so that the 
inference engine does not have to repeatedly recompile the model. 

CyclingTime2 extends CyclingTime1 as follows: 

• It encapsulates the training and prediction models in separate classes. 

RunCyclingTime2 then uses instances of these classes to train the model and 
implement online learning. 

• It introduces the use of random variable arrays for observed variables. 

Random variable arrays are much more efficient than using a separate 
Variable<T> object for each observed value. 

• It introduces a different way to handle priors that is useful for more sophisticated 
learning models. 

A simple example is given at the end of this chapter. 
 

The CyclingTime2 classes are implemented in CyclingTime2.cs. RunCyclingTime2 is 
implemented as a static method in RunCyclingSamples.cs. Figure 5 shows the factor 
graph for the underlying generative model. 
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Figure 5. CyclingTime2 factor graph 

This graph is essentially similar to Figure 1. However, CyclingTime1 used a separate 
Variable<T> object for each observed value, each of which had its own node. This 
approach is not practical for more than a few values. CyclingTime2 uses an array of 
random variables, travelTimes, to represent the 10 observed values. The rectangle 
around the travelTimes node is called a plate, and is basically a compact way to 
replicate model structure in a graph. 

Note: For brevity, this section contains only edited excerpts of the key parts of 
CyclingTime2.  

CyclistBase Class 

CyclingTime2 implements the training and prediction models as separate classes. 
However, training and prediction models typically share at least some code. To avoid 
implementing the same code twice, the common parts of the CyclingTime2 models 
are implemented in a base class, CyclistBase. The two model classes then inherit from 
CyclistBase, and implement the code that is specific to training or prediction. The 
class structure is more complicated than strictly necessary for CyclingTime2, but it is 
useful for the more sophisticated applications described later in this document. 

CyclistBase Fields 

CyclistBase has the following basic structure. 

public class CyclistBase 

{ 

  public InferenceEngine InferenceEngine; 

 

  protected Variable<double> AverageTime; 

  protected Variable<double> TrafficNoise; 

  protected Variable<Gaussian> AverageTimePrior; 

  protected Variable<Gamma> TrafficNoisePrior; 

 

  public virtual void CreateModel() {...} 

 

  public virtual void SetModelData(ModelData priors) {...} 



Infer.NET 101 – 24  

 

} 

 
 

The fields serve the following purposes: 

• AverageTime and TrafficNoise are random variables that serve the same purpose 
as in CyclingTime1. 

• AverageTimePrior and TrafficNoisePrior are distributions that represent the priors 
for the random variables.  

• InferenceEngine represents an instance of the inference engine. 
 

AverageTimePrior and TrafficNoisePrior are distributions, but they are typed as 
Variable<T> objects over their respective distribution types rather than as 
distribution types. Distributions are not random variables. However, the Variable<T> 
type is not used only for random variables; it can also be used for values that you 
want to be able to change at run-time without requiring the inference engine to 
recompile the model. Using Variable<T> to hold the averageTime and trafficNoise 
priors is more computationally efficient and supports a more flexible approach to 
handling priors. For more details, see the following section, “CreateModel Method.” 

Most of the variables are protected because they are used only by the two derived 
classes. The exception is InferenceEngine. By default, each instance of the model has 
its own instance of the engine. However applications that use multiple instances of 
the model—such as applications that handle multiple cyclists—could end up with a 
large number of engine instances, even though a single instance is usually sufficient. 
Making InferenceEngine public allows a parent application to assign the same 
inference engine instance to each model, and use it for all computations. 

CyclistBase has two instance methods. RunCyclingTime2 calls these methods in the 
following order, after creating an instance of the training or prediction classes: 

1. RunCyclingTime2 calls CreateModel to create the training or prediction model. 

2. RunCyclingTime2 calls SetModelData to specify the model’s priors. 
 

The training and prediction models implement additional methods to run various 
queries, based on the model and the observed values. 

CreateModel Method 

RunCyclingTime2 calls CreateModel to create the model. CyclistBase.CreateModel 
implements the modelling code that is common to both training and prediction as 
follows: 

public virtual void CreateModel() 

{ 

  AverageTimePrior = Variable.New<Gaussian>(); 

  TrafficNoisePrior = Variable.New<Gamma>(); 

  AverageTime = Variable<double>.Random(AverageTimePrior); 

  TrafficNoise = Variable<double>.Random(TrafficNoisePrior); 

  if (InferenceEngine == null) 

  { 

    InferenceEngine = new InferenceEngine(); 

  } 

} 
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The CyclistTraining and CyclistPrediction implementations override CreateModel and 
add code as appropriate for their specific model. 

CyclingTime1 took the simplest approach to handling priors: use a factory method to 
create and define the random variable. For example, CyclingTime1 assigns a fixed 
prior to averageTime as follows: 

Variable<double> averageTime = Variable.GaussianFromMeanAndPrecision(15, 0.01); 
 

CyclingTime2 uses a more sophisticated and flexible approach to handling priors. The 
priors are represented by Variable<T> objects, which are basically containers for the 
distributions. For example, the AverageTime prior is represented by a 
Variable<Gaussian> random variable, AverageTimePrior. 

CreateModel creates AverageTimePrior by using the static Variable.New<T> method, 
which is a static factory method that creates a new Variable<T> object with a 
specified domain type but no statistical definition. This method is useful if you want 
to create a variable object and statistically define it later, or simply assign a value to 
the variable’s ObservedValue property.  

CreateModel then statistically defines AverageTime by calling the static 
Variable<T>.Random method. Random is a unary factor which defines a random 
variable by using a specified distribution object or a Variable<T> object that 
represents a distribution object.  In this example, Variable<double>.Random creates 
a double random variable and statistically defines it by using the Gaussian 
distribution that is represented by AverageTimePrior. 

TrafficNoise is created and defined in the same way. 

At this point, the actual prior distribution has not been specified. That can be done 
later—at any time before querying the inference engine—by assigning an appropriate 
Gaussian object to the AverageTimePrior variable’s ObservedValue property. To 
specify another prior as the variable’s distribution, just assign the distribution object 
to ObservedValue. 

This approach has two advantages over the one used by CyclingTime1: 

• It simplifies implementing learning models with multiple sets of observations. 

Instead of creating a new variable for each set of observations, CyclingTime2 uses 
AverageTime throughout the application, and updates the prior by assigning each 
new posterior to the AverageTimePrior variable’s ObservedValue property.  

• It improves performance.  

If you change the model, the inference engine must recompile it before running a 
query, which can take a significant amount of time. However, assigning a new 
value to an ObservedValue property doesn’t change the model, even if the value 
is a reference type rather than a value type. For all queries after the first one, the 
engine just runs the existing compiled model with new observed values. 

 

Finally, CreateModel creates an instance of the inference engine, if one hasn’t already 
been assigned by the parent application. 
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SetModelData Method 

CreateModel defines the model, but doesn’t assign any values to the model data. 
After creating the model, RunCyclingTime2 calls SetModelData to specify the model 
data. For CyclingTime2, the model data consists of the priors, but other applications 
might use different data. The base class’s SetModelData method assigns the specified 
distributions to the AverageTimePrior and TrafficNoisePrior variables’ ObservedValue 
properties. The method is virtual, which allows derived classes to override it and 
specify different data, as required. 

public virtual void SetModelData(ModelData priors) 

{ 

  AverageTimePrior.ObservedValue = priors.AverageTimeDist; 

  TrafficNoisePrior.ObservedValue = priors.TrafficNoiseDist; 

} 

 
 

For convenience, the model data is packaged in a private ModelData structure. 

public struct ModelData 

{ 

  public Gaussian AverageTimeDist; 

  public Gamma TrafficNoiseDist; 

 

  public ModelData(Gaussian mean, Gamma precision) 

  { 

    AverageTimeDist = mean; 

    TrafficNoiseDist = precision; 

  } 

} 

CyclistTraining Class 

The CyclistTraining class inherits from CyclistBase and implements the training model. 
The following example shows the class structure: 

public class CyclistTraining : CyclistBase 

{ 

  protected VariableArray<double> TravelTimes; 

  protected Variable<int> NumTrips; 

 

  public override void CreateModel() 

  {...  } 

 

  public ModelData InferModelData(double[] trainingData) 

  {...} 

} 

 

The fields represent the following: 

• TravelTimes represents an array of training data. 

The data array is in the form of a VariableArray<T> object, which is discussed 
later in “CreateModel Method.” 

• NumTrips represents the length of the training data array. 
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The reason for making NumTrips a Variable<T> object is explained later in 
“CreateModel Method.” 

 

The fields are protected rather than private, so that derived classes can access them. 

CyclistTraining has two methods: 

• CreateModel overrides the base method and implements the training-specific 
parts of the model. 

• InferModelData takes the training data, runs the queries, and returns the 
posteriors. 

 

CyclistTraining has no model data apart from the AverageTime and TrafficNoise 
priors, so it does not override SetModelData. 

CreateModel Method 

RunCyclingTime2 calls CyclistTraining.CreateModel to create the training model, as 
follows: 

public override void CreateModel() 

{ 

  base.CreateModel(); 

  NumTrips = Variable.New<int>(); 

  Range tripRange = new Range(NumTrips); 

  TravelTimes = Variable.Array<double>(tripRange); 

  using (Variable.ForEach(tripRange)) 

  { 

    TravelTimes[tripRange] = 

           Variable.GaussianFromMeanAndPrecision(AverageTime, TrafficNoise); 

  } 

} 

 
 

CreateModel calls the base method to create the common parts of the model and 
then implements the training-specific modelling code. 

NumTrips is a Variable<int> type that represents the number of elements in the 
training data array. CreateModel uses New to create the NumTrips variable, and then 
uses NumTrips to initialize tripRange. NumTrips doesn’t have a value at this point; it is 
specified later by assigning a value to the ObservedValue property. 

Because CyclingTime2 has ten observations, it uses an array of random variables to 
represent the observed values instead of separate Variable<double> objects. You 
could package the set of objects as a .NET array, but the inference engine doesn’t 
handle such arrays efficiently. A better approach is to use a VariableArray<T> object, 
which represents an array of random variables in a way that can be handled 
efficiently by the inference engine. 

Some explanatory details: 

• VariableArray<T> is an indexed type, so it can be used much like a standard .NET 
array. 

However, you must use a Microsoft.ML.Probabilistic.Models.Range object as the 
index instead of the usual integer. 
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• The Range object is initialised with the array length. 

In this case, the array length is determined by NumTrips. The NumTrips value 
hasn’t been specified at this point, but you can initialize Range in this way as long 
as you specify the NumTrips value before querying the inference engine. 

• To create a VariableArray<T> object, call the static factory method 
Variable.Array<T>, and pass it the associated Range object. 

Variable.Array<T> creates a VariableArray<T> object, but the variables are not 
statistically defined. That task must be handled separately.  

 

Note: Although NumTrips is a Variable<int> object, it actually represents a well-
defined value—the number of array elements. Making it a Variable<int> instead of 
an int allows CyclingTime2 to efficiently handle multiple training sessions with data 
arrays of different lengths. If NumTrips were an int, CyclingTime2 would have to 
create a new Range object each time the array length changes, which would change 
the model and force the model compiler to recompile it. By using a Variable<int> 
object, the only change from one session to the next is the NumTrips ObservedValue 
property, and recompilation isn’t necessary. 

The final step in creating the training model is to statistically define the elements of 
the travelTimes array. Because travelTimes is not a standard array, you can’t use for 
or foreach to step through the array. Instead, Infer.NET provides a static 
Variable.ForEach method which serves the same purpose. ForEach takes a specified 
Range object and iterates over the range. The using statement (a standard C# 
construct) defines the ForEach block’s scope, and can contain an arbitrary number of 
statements. 

InferModelData Method 

RunCyclingTime2 calls InferModelData to infer the AverageTime and TrafficNoise 
posteriors based on the priors that are specified earlier in SetModelData and on a 
training data array. 

public ModelData InferModelData(double[] trainingData) 

{ 

  ModelData posteriors; 

 

  NumTrips.ObservedValue = trainingData.Length; 

  TravelTimes.ObservedValue = trainingData; 

  posteriors.AverageTimeDist = InferenceEngine.Infer<Gaussian>(AverageTime); 

  posteriors.TrafficNoiseDist = InferenceEngine.Infer<Gamma>(TrafficNoise); 

  return posteriors; 

} 

 
 

InferModelData assigns the length of the training data array to the NumTrips 
variable’s ObservedValue property. It then assigns the training data to the 
TravelTimes array’s ObservedValue property and calls the inference engine to infer 
the posteriors. InferModelData then returns the posteriors, packaged as a ModelData 
structure. 
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CyclistPrediction Class 

The CyclistPrediction class implements the prediction model. It inherits from 
CyclistBase and has the following class structure: 

public class CyclistPrediction: CyclistBase 

{ 

  private Gaussian tomorrowsTimeDist; 

  public Variable<double> TomorrowsTime; 

 

  public override void CreateModel() {...} 

 

  public Gaussian InferTomorrowsTime() {...} 

 

  public Bernoulli InferProbabilityTimeLessThan(double time) 

  {...} 

} 

 
 

The fields represent the following: 

• tomorrowsTimeDist represents the predicted travel time distribution. 

• TomorrowsTime is a random variable that represents the predicted travel time. 

This field could be private for the purposes of CyclingTime2. However, a public 
field is useful for constructing models that involve more than one cyclist, as 
discussed later in Chapter 8, “CyclingTime5 Application: A Model for Two 
Cyclists.” 

 

CyclistPrediction has three methods: 

• CreateModel overrides the base method and implements the prediction-specific 
parts of the model. 

• InferTomorrowsTime queries the inference engine for tomorrow’s predicted time 
distribution, based on the trained model. 

• InferProbabilityTimeLessThan infers the probability that tomorrow’s time is less 
than the specified value. 

 

CyclistPrediction handles the model data in the same way as CyclistTraining, so it does 
not override SetModelData. 

CreateModel Method 

RunCyclingTime2 calls CyclistPrediction.CreateModel to create the prediction model. 

public override void CreateModel() 

{ 

  base.CreateModel(); 

  TomorrowsTime = 

     Variable.GaussianFromMeanAndPrecision(AverageTime, TrafficNoise); 

} 

 
 

CreateModel calls the base method to create the common parts of the model. It then 
implements the prediction-specific modelling code, which is identical to the code 
from CyclingTime1. 



Infer.NET 101 – 30  

 

InferTomorrowsTime Method 

RunCyclingTime2 calls SetModelData to specify the prediction model’s priors. It then 
calls InferTomorrowsTime to obtain the predicted distribution for tomorrow’s travel 
time. These priors are presumably the posteriors that were obtained from the most 
recent training session. 

public Gaussian InferTomorrowsTime() 

{ 

  tomorrowsTimeDist = InferenceEngine.Infer<Gaussian>(TomorrowsTime); 

  return tomorrowsTimeDist; 

} 

 

InferTomorrowsTime infers the marginal based on the priors that RunCyclingTime2 
specified when it called SetModelData, and then returns the distribution to the caller. 

The inference computation in InferTomorrowsTime is more efficient than the 
corresponding computation in CyclingTime1, which had to retrain the model from the 
beginning before computing tomorrow’s predicted time. CyclingTime2 computes 
tomorrowsTimeDist by using the posteriors from the training model as priors. These 
distributions essentially represent the training results, so there is no need to repeat 
the training computation. 

InferProbabilityTimeLessThan Method 

InferProbabilityTimeLessThan infers the probability that tomorrows travel time is less 
than a specified time. 

public Bernoulli InferProbabilityTimeLessThan(double time) 

{ 

  return  InferenceEngine.Infer<Bernoulli>(TomorrowsTime < time); 

} 

 
 

This code performs the same task as the corresponding code in CyclingTime1. 
InferProbabilityTimeLessThan returns a Bernoulli distribution, which is characterized 
by a single parameter that specifies the probability that the variable is true. In this 
case, true corresponds to the probability that tomorrows travel time is less than the 
specified value. The Bernoulli distribution is discussed in detail in “Discrete 
Distributions” in Chapter 6, later in this document. 

Use the Model 

This section discusses how RunCyclingTime2 uses the classes discussed in the 
preceding sections to train the model and predict tomorrow’s travel time. 

Training 

The first part of RunCyclingTime2 creates and trains the model, as shown in the 
following excerpt. 

Listing 2. Training the Model 
double[] trainingData = new double[] { 13, 17, 16, 12, 13, 12, 14, 18, 16, 16 }; 

ModelData initPriors = new ModelData( 
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    Gaussian.FromMeanAndPrecision(1.0, 0.01), 

    Gamma.FromShapeAndScale(2.0, 0.5)); 

 

//Train the model 

CyclistTraining cyclistTraining = new CyclistTraining(); 

cyclistTraining.CreateModel(); 

cyclistTraining.SetModelData(initPriors); 

 

ModelData posteriors1 = cyclistTraining.InferModelData(trainingData); 

 

... //Print the training results 

 
 

RunCyclingTime2 defines initial priors for AverageTime and TrafficNoise, and 
packages them as a ModelData structure.  

RunCyclingTime2 creates a new CyclistTraining object to represent the training 
model. It calls CreateModel to create the training model and passes the initial priors 
to SetModelData. Finally, RunCyclingTime2 passes the training data to 
InferModelData, which returns the posteriors. 

The results are: 

Average travel time = Gaussian(14.65, 0.4459) 
Traffic noise = Gamma(5.33, 0.05399)[mean=0.2878] 
 

Prediction 

RunCyclingTime2 next uses the posteriors from the first training session to predict 
tomorrow’s results. 

Listing 3. Predicting results 
CyclistPrediction cyclistPrediction = new CyclistPrediction(); 

cyclistPrediction.CreateModel(); 

cyclistPrediction.SetModelData(posteriors1); 

 

Gaussian tomorrowsTimeDist = cyclistPrediction.InferTomorrowsTime(); 

 

double tomorrowsMean = tomorrowsTimeDist.GetMean(); 

double tomorrowsStdDev = Math.Sqrt(tomorrowsTimeDist.GetVariance()); 

 

Console.WriteLine("Tomorrows average time: {0:f2}", tomorrowsMean); 

Console.WriteLine("Tomorrows standard deviation: {0:f2}", tomorrowsStdDev); 

Console.WriteLine("Probability that tomorrow's time is < 18 min: {0}", 

                   cyclistPrediction.InferProbabilityTimeLessThan(18.0)); 

 
 

The procedure is similar to the training phase. RunCyclingTime2 creates a new 
CyclistPrediction object to represent the training model. It calls CreateModel to create 
the training model and passes the posteriors from the training phase to 
SetModelData. Finally, RunCyclingTime2 calls InferTomorrowsTime and 
InferProbabilityTimeLessThan to obtain the predicted results, as follows: 

Tomorrow’s average time: 14.65 
Tomorrow’s standard deviation: 2.17 
Probability that tomorrow's time is < 18 min: Bernoulli(0.9383) 
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Online Learning 

CyclingTime1 is limited to a single training phase and a single set of predictions. 
Probabilistic programs often use a process known as online learning, which allows an 
application to learn model parameters rapidly based on some initial data, and then 
continue to learn incrementally as more data comes in. The basic process is: 

1. Start with initial priors that are typically chosen to have very broad distributions. 

2. Collect some data and compute posteriors. 

3. Update the model’s priors to reflect the new data by replacing them with 
posteriors from Step 2. 

4. Use the updated model to run predictions. 

5. Repeat Steps 2 to 4 as many times as required, perhaps indefinitely. 
 

As you continue the cycle of collecting data and updating priors, the model 
parameters should approach the actual values, and the model’s predictive ability 
should improve. In addition, if external conditions change, online training allows the 
model to adapt to those changes. 

It is important to note that if you are prepared to keep the data around, you can 
always retrain your model from scratch using the original priors and all the data; this 
is the fundamental difference between offline learning and online learning. 

So far, CyclingTime2 is just a more sophisticated and efficient version of 
CyclingTime1, with some additional training data. However, the approach used by 
CyclingTime2 is much more flexible. This section shows how to use the CyclistTraining 
and CyclistPrediction classes to implement online learning. 

CyclingTime2 has already completed one training phase and used the results for 
prediction. By implementing a second training and prediction phase, you can 
incrementally improve the accuracy of the AverageTime and TrafficNoise 
distributions. The basic approach can be easily extended to handle as many additional 
training sessions as required. 

The following example shows how RunCyclingTime2 implements the second training 
session. 

double[] trainingData2 = new double[] { 17, 19, 18, 21, 15 }; 

 

cyclistTraining.SetModelData(posteriors1); 

ModelData posteriors2 = cyclistTraining.InferModelData(trainingData2); 

 

//Print results 

 

cyclistPrediction.SetModelData(posteriors2); 

 

tomorrowsTimeDist = cyclistPrediction.InferTomorrowsTime(); 

tomorrowsMean = tomorrowsTimeDist.GetMean(); 

tomorrowsStdDev = Math.Sqrt(tomorrowsTimeDist.GetVariance()); 

 

//Print results 
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The second training data set is for five days. CyclistTraining can handle data sets of 
arbitrary length, so a training session can span any convenient time window, even 
daily. 

An instance of CyclistTraining already exists, and the model was created during the 
first training session, so subsequent training sessions require only two lines of code: 

1. Call CyclistTraining.SetModelData to update the training model’s priors with the 
posteriors from the previous training session. 

2. Call CyclistTraining.InferModelData to infer new posteriors. 
 

The new posteriors now incorporate the initial priors and training data plus additional 
information from the second set of training data. As a practical matter, the influence 
of the initial priors is negligible by now, and the posteriors reflect the training data. 

RunCyclingTime2 calls CyclistPrediction.SetModelData to update the prediction 
model’s priors with the new posteriors and calls the two CyclistPrediction inference 
methods, to predict the next day’s travel time. 

This procedure demonstrates the advantage of using Variable<T> objects to 
represent priors. When you update the priors, SetModelData simply assigns the 
specified distributions to the AverageTimePrior and TrafficNoisePrior variables’ 
ObservedValue properties. Because only ObservedValue properties have changed 
between the first and second phases, the training and prediction models are 
unchanged and don’t have to be recompiled. The inference engine can simply run the 
compiled models from the first phase with the new training data and priors. 

The results for the second training and prediction phase are: 

Average travel time = Gaussian(15.61, 0.3409) 
Traffic noise = Gamma(7.244, 0.02498)[mean=0.1809] 
Tomorrows average time: 15.61 
Tomorrows standard deviation: 2.60 
Probability that tomorrow's time is < 18 min: Bernoulli(0.8213) 
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Chapter 4   

Digression: Priors 

How Much Does the Initial Prior Matter? 

A posterior reflects the influence of both the prior and the observations. How many 
observations does it take before the influence of the prior on the trained distribution 
is negligible? What if the prior doesn’t match the observations well at all? 

The answers to these questions depend on the particular model and prior, but you 
can get some idea by playing with averageTime prior’s parameters. CyclingTime2 uses 
a prior with a nominal average time of 1.0, which is not a good estimate of the value 
of 15.61 that was inferred after training. If you change the prior’s average time to 
15.0 (a much more accurate prior), the trained value is 15.65, almost 
indistinguishable from the value when the prior was set to 1.0. For CyclingTime2 at 
least, fifteen observations are enough to effectively override the influence of the 
initial prior. 

Conjugate Priors 

Why do CyclingTime1 and CyclingTime2 use a Gamma prior for TrafficNoise? Why not 
just use a Gaussian for both parameters? More generally, if you use a random 
variable to represent a distribution parameter, which distribution should you use to 
define that random variable? 

For a factor representing a distribution, if a distribution parameter’s posterior is from 
the same distribution family as the parameter’s prior—and the other parameters are 
fixed—then the prior is referred to as a conjugate prior. Conjugate priors can simplify 
the process of computing posteriors—and some inference calculations require 
them—so conjugate priors are the natural way to represent a parameter’s 
uncertainty for computational purposes. 

For the CyclingTime1 example, the parent distribution is a Gaussian which has two 
parameters. Each of the parameters requires a different conjugate prior: 

• The distribution’s mean is represented by a double random variable that is 
defined by another Gaussian distribution. 
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• The distribution’s precision is represented by a double random variable that is 
defined by a Gamma distribution. 

 

Other ways of defining a Gaussian require different conjugate priors, and other 
distributions have their own conjugate priors. For example, the conjugate prior for 
the probability vector of a Discrete distribution is the Dirichlet distribution. For more 
information, see “Conjugate prior” in “Resources.” 
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Chapter 5   

CyclingTime3 Application: Mixture Models 

The scenario for CyclingTime1 and CyclingTime2 assumed that the distribution of 
travel times could be represented by a single Gaussian distribution. This is a common 
assumption, but data isn’t necessarily that cooperative. 

For example, any cyclist knows that you occasionally encounter extraordinary 
circumstances, such as a flat tire or a road closed by construction, which add a 
substantial amount to your usual travel time. A single Gaussian might be a reasonable 
model for the ordinary trips, but the data for the preceding scenario might look more 
like the thick line in Figure 6.  

0 X

𝒩 

Data

Ordinary 
Travel Time
Distribution

Extraordinary 
Travel Time
Distribution

 

Figure 6. Bimodal travel time distribution 

The effect of the extraordinary travel times in this example is a data set with two 
peaks—one corresponding to normal travel, and one corresponding to abnormal 
travel. Representing this data set by a single Gaussian merges the effects of both 
types of travel into a single relatively simple model, which might not be a very 
accurate. Another, and often better approach, is to represent such data as a mixture 
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of several Gaussians. Mixture models have the further advantage of being less 
sensitive to data outliers than a single distribution. 

To specify such a model, you don’t need to know the relative frequency of each type 
of travel but you must specify the number of Gaussians in the mixture. In this case, 
two Gaussians is the obvious choice, but the optimum number isn’t always that 
apparent. As discussed in Chapter 7, Bayesian inference provides a way to determine 
the optimum number of Gaussians in the mixture by using model evidence.  

The CyclingTime3 application extends the CyclingTime2 models to handle 
extraordinary events, as follows: 

• Most trips are ordinary, with a mean travel time of approximately 15 - 16 
minutes. 

• Five to ten per cent are extraordinary, and require an additional ten to fifteen 
minutes. 

 

CyclingTime3 handles this scenario by representing the system as a mixture of two 
Gaussians. For convenience, the Gaussian that corresponds to the ordinary travel 
times is called the ordinary component and the Gaussian that corresponds to the 
extraordinary travel times is called the extraordinary component. 

CyclingTime3 is generally similar to CyclingTime2, as follows: 

• The training and prediction models are implemented by the CyclistMixedTraining 
and CyclistMixedPrediction classes. 

• CyclistMixedTraining and CyclistMixedPrediction inherit from a base class, 
CyclistMixedBase, which implements the common parts of the models. 

• The basic class structure is identical to the corresponding classes from 
CyclingTime2. 

The differences are limited to the details of the modelling code. 

• A RunCyclingTime3 static method creates and trains the training model and then 
uses the results and the prediction model to predict tomorrow’s travel time. 

 

For brevity, CyclingTime3 uses only a single training and prediction phase, but can 
easily be extended to multiple phases. 

The CyclingTime3 classes are implemented in CyclingTime3.cs. RunCyclingTime3 is 
implemented as a static method in RunCyclingSamples.cs. 

CyclistMixedBase Class 

CyclistMixedBase has the following fields, most of which are random variables that 
are shared by the training and prediction classes. 

Listing 4.: CyclistMixed global variables 
protected InferenceEngine InferenceEngine; 

 

protected int NumComponents; 

 

protected VariableArray<Gaussian> AverageTimePriors; 
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protected VariableArray<double> AverageTime; 

 

protected VariableArray<Gamma> TrafficNoisePriors; 

protected VariableArray<double> TrafficNoise; 

 

protected Variable<Dirichlet> MixingPrior; 

protected Variable<Vector> MixingCoefficients; 

 
 

The first four random variables serve the same purpose as the corresponding 
variables in CyclingTime2. However, a mixture model requires separate AverageTime 
and TrafficNoise parameters for each mixture component, so there are two of each. 
For computational convenience, the two AverageTime and TrafficNoise values are 
packaged as variable arrays, as are the corresponding priors. MixingPrior and 
MixingCoefficients are related to the mixture model, and are discussed later. 

CreateModel Method 

CyclistMixedBase.CreateModel creates and defines the variables that are common to 
both models. It is similar in principle to CyclistBase.CreateModel, but the details are a 
bit more complicated. 

public virtual void CreateModel() 

{ 

  InferenceEngine = new InferenceEngine(new VariationalMessagePassing()); 

 

  NumComponents = 2; 

  Range ComponentRange = new Range(NumComponents); 

 

  AverageTimePriors = Variable.Array<Gaussian>(ComponentRange); 

  TrafficNoisePriors = Variable.Array<Gamma>(ComponentRange); 

  AverageTime = Variable.Array<double>(ComponentRange); 

  TrafficNoise = Variable.Array<double>(ComponentRange); 

 

  using (Variable.ForEach(ComponentRange)) 

  { 

    AverageTime[ComponentRange] = 

             Variable<double>.Random(AverageTimePriors[ComponentRange]); 

    TrafficNoise[ComponentRange] = 

             Variable<double>.Random(TrafficNoisePriors[ComponentRange]); 

  } 

 

  //Mixing coefficients 

  MixingPrior = Variable.New<Dirichlet>(); 

  MixingCoefficients = Variable<Vector>.Random(MixingPrior); 

  MixingCoefficients.SetValueRange(ComponentRange); 

} 

 

The inference engine supports several inference algorithms. The default algorithm, 
which is used by the previous examples, is expectation propagation. CreateModel 
instead specifies the variational message-passing algorithm for the inference engine. 
Variational message passing is often a better choice for mixture models, and using 
expectation propagation for CyclingTime3 causes numerical problems in the 
inference computation, giving rise to improper messages. For more discussion of 
inference algorithms and improper messages, see “How the Inference Engine Works” 
later in this document. 
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The Range object, ComponentRange, is initialized to the number of components (2). 
It defines the range for several component-related VariableArray<T> objects. 

For convenience the AverageTime and TrafficNoise random variables and their priors 
are packaged as two-element arrays. CyclistMixedBase then defines AverageTime and 
TrafficNoise by using Variable.ForEach to iterate over the two mixture components 
and define each element of AverageTime and TrafficNoise with the appropriate prior. 

The final set of random variables is required to define the mixture itself. Mixture 
components typically do not have equal influence on the overall distribution, so the 
relative proportion of each component in the mixture is defined by a pair of mixing 
coefficients, each of which specifies the proportion of one of the components. 

CyclistMixedBase represents the mixing coefficients by a Vector random variable, 
MixingCoefficients. The Vector type—defined by Infer.NET in the 
Microsoft.ML.Probabilistic.Math namespace—contains a set of double values, two in 
this case. MixingCoefficients is defined by a Dirichlet prior, MixingPrior, which is 
represented by a Variable<T> object so that it can be assigned a value later. 

Briefly, a Dirichlet distribution is a distribution over a probability vector, which is a 
vector whose elements add up to 1.0. For example, a sample from such a distribution 
of dimension two, such as the one used by CyclingTime3, might be (0.25, 0.75). For 
more discussion of Dirichlet distributions see “Discrete Distributions” in Chapter 6. 

The final line calls Variable.SetValueRange to explicitly specify the MixingCoefficients 
range, because the Infer.NET model compiler cannot always deduce the range of 
values that an integer random variable can take. 

SetModelData Method 

RunCyclingTime3 calls SetModelData to specify priors for AverageTime, TrafficNoise, 
and MixingCoefficients. 

public virtual void SetModelData(ModelDataMixed modelData) 

{ 

  AverageTimePriors.ObservedValue = modelData.AverageTimeDist; 

  TrafficNoisePriors.ObservedValue = modelData.TrafficNoiseDist; 

  MixingPrior.ObservedValue = modelData.MixingDist; 

} 

 
 

For convenience, the model data is packaged as a ModelDataMixed structure. 

public struct ModelDataMixed 

{ 

  public Gaussian[] AverageTimeDist; 

  public Gamma[] TrafficNoiseDist; 

  public Dirichlet MixingDist; 

} 
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CyclistMixedTraining Class 

The CyclistMixedTraining class inherits from CyclistMixedBase and implements the 
training model. 

The following example shows the class structure and fields: 

public class CyclistMixedTraining : CyclistMixedBase 

{ 

  protected Variable<int> NumTrips; 

  protected VariableArray<double> TravelTimes; 

  protected VariableArray<int> ComponentIndices; 

 

  public override void CreateModel() {...} 

  public ModelDataMixed InferModelData(double[] trainingData)  

  {...} 

} 

 
 

The NumTrips and TravelTimes fields serve the same purpose as they do in 
CyclistTraining. ComponentIndices is a new int random variable array with the same 
data range as TravelTimes. It specifies the index of the mixture component that 
generated the corresponding travel time. 

The generative process is as follows: 

1) For each mixture component, sample AverageTime and TrafficNoise from 
their respective priors. 

2) Sample the mixing coefficients from the mixing prior. 

3) For each trip, do the following: 

a. Sample the component index to determine which mixing component 
generates the travel time. 

b. Sample the travel time value from a Gaussian distribution whose 
mean and precision are the AverageTime and TrafficNoise values for 
that component. 

 

CyclistMixedTraining.CreateModel implements this model, as shown in the following 
example. 

public override void CreateModel() 

{ 

  base.CreateModel(); 

 

  NumTrips = Variable.New<int>(); 

  Range tripRange = new Range(NumTrips); 

  TravelTimes = Variable.Array<double>(tripRange); 

  ComponentIndices = Variable.Array<int>(tripRange); 

 

  using (Variable.ForEach(tripRange)) 

  { 

    ComponentIndices[tripRange] = 

               Variable.Discrete(MixingCoefficients); 

    using (Variable.Switch(ComponentIndices[tripRange])) 

    { 

      TravelTimes[tripRange].SetTo( 

        Variable.GaussianFromMeanAndPrecision( 

          AverageTime[ComponentIndices[tripRange]], 

          TrafficNoise[ComponentIndices[tripRange]])); 
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    } 

  } 

} 

 

 
 

CreateModel calls the base class method to create and define the common variables. 
It then creates the field variables, and a Range variable that is initialized by NumTrips. 
The core of the training model is in the using blocks. 

The outer using block uses Variable.ForEach to iterate through the elements of the 
TravelTimes and ComponentIndices arrays. For each iteration, it defines the 
corresponding ComponentIndices element by using a Discrete distribution whose 
parameters are specified by MixingCoefficients. The MixingCoefficients determine the 
probability that each of the two mixture components produces the data value. 

The inner using block implements the branches that define the mixture. With 
standard branches, such as if-else if-else, one branch executes and the others do not. 
With probabilistic programming, instead of all-or-nothing, each branch executes with 
a specified probability, which determines the proportion that the branch contributes 
to the model. 

The probability that each branch executes is specified by a discrete random variable 
called a condition. If, for example, the condition has equal probabilities for all possible 
values, each branch is activated with equal probability and contributes equally to the 
model.  

CyclingTime3, implements branches by using the Variable.Switch method, which 
represents multiple branches in the generated code, one for each of the condition’s 
possible values. Each branch executes the code in the using block, as follows: 

• The probability of each of the condition’s possible values determines the 
percentage of the time that the associated branch executes. 

• The code is essentially the same for each branch, except that the code in each 
branch uses the condition’s possible value for that particular branch. 

For more discussion of branches, see “Branching on Variables to Create Mixture 
Models” in “Resources”. 

For CyclistMixed: 

• The Switch condition is the currently selected element of ComponentIndices, 
which generates two branches, one for each mixture component. 

• The probability that each branch executes is determined by the mixing 
coefficients. 

• The code in each branch defines the currently selected TravelTimes element by 
using a Gaussian distribution characterized by AverageTimePrior and 
TrafficNoisePrior variables for the associated component. 

 

Note: CyclistMixed uses Variable.SetTo to define TravelTimes rather than the ‘=’ 
operator. This is not strictly required for this example, but it is useful to get into the 
habit of using SetTo because it is required in one or two situations . For example, 
SetTo is required if you provide the statistical definition of a scalar random variable in 
both branches of an If/IfNot construct. Because Infer.NET cannot overload the C# ‘=’ 
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operator, the definition in the IfNot branch will override the definition in the If 
branch.  

InferModelData Method 

InferModelData infers posteriors based on the priors specified earlier in 
SetModelData and a training data array.  

public ModelDataMixed InferModelData(double[] trainingData) //Training model 

{ 

  ModelDataMixed posteriors; 

 

  NumTrips.ObservedValue = trainingData.Length; 

  TravelTimes.ObservedValue = trainingData; 

 

  posteriors.AverageTimeDist = InferenceEngine.Infer<Gaussian[]>(AverageTime); 

  posteriors.TrafficNoiseDist = InferenceEngine.Infer<Gamma[]>(TrafficNoise); 

  posteriors.MixingDist = InferenceEngine.Infer<Dirichlet>(MixingCoefficients); 

 

  return posteriors; 

} 

 
 

RunCyclingTime3 passes in a double array that contains the training data. 
InferModelData sets NumTrips to the array length and assigns the training data to 
TravelTimes. It then infers posteriors for AverageTime, TrafficNoise, and 
MixingCoefficients, and returns them to RunCyclingTime3 as a ModelDataMixed 
structure. 

CyclistMixedPrediction Class 

The CyclistMixedPrediction class implements the prediction model. The following 
example shows the class structure. It is nearly identical to CyclistPrediction except 
that, for simplicity, there is no InferProbabilityTimeLessThan method. 

public class CyclistMixedPrediction: CyclistMixedBase 

{ 

  private Gaussian TomorrowsTimeDist; 

  private Variable<double> TomorrowsTime; 

 

  public override void CreateModel() {...  } 

  public Gaussian InferTomorrowsTime() {...} 

} 

 

CyclistMixedPrediction inherits from CyclistMixedBase and the fields and methods 
serve the same purpose as the equivalent fields and methods from CyclistPrediction. 
The differences are in the implementation details. 

CreateModel Method 

RunCyclingTime3 calls CyclistPrediction.CreateModel to create the prediction model. 

public override void CreateModel() 

{ 

 base.CreateModel(); 
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 Variable<int> componentIndex = Variable.Discrete(MixingCoefficients); 

 TomorrowsTime = Variable.New<double>(); 

 

 using (Variable.Switch(componentIndex)) 

 { 

  TomorrowsTime.SetTo( 

    Variable.GaussianFromMeanAndPrecision( 

    AverageTime[componentIndex], 

    TrafficNoise[componentIndex])); 

 } 

} 

 

 
 

The model predicts a single travel time, so there is a single component index variable, 
componentIndex. It is defined by a two-element Discrete distribution which is 
characterized by the mixing coefficients, presumably the posterior determined by the 
training phase. The model then uses Variable.Switch to define TomorrowsTime by 
using a mixture of the two components, with the proportions defined by 
MixingCoefficients. 

InferTomorrowsTime Method 

RunCyclingTime3 calls the InferTomorrowsTime method to obtain the predicted 
distribution for tomorrow’s time. The implementation is identical to 
CyclistPrediction.InferTomorrowsTime. 

public Gaussian InferTomorrowsTime() 

{ 

  TomorrowsTimeDist = InferenceEngine.Infer<Gaussian>(TomorrowsTime); 

  return TomorrowsTimeDist; 

} 

 
 

Use the Model 

RunCyclingTime3 creates an instance of CyclistMixed, trains the model, and then uses 
the trained model to predict tomorrow’s travel time. 

static void RunCyclingTime3(string[] args) 

{ 

  ModelDataMixed initPriors; 

 

  double[] trainingData = 

              new double[]{ 13, 17, 16, 12, 13, 12, 14, 18, 16, 16, 27, 32 }; 

  initPriors.AverageTimeDist = new Gaussian[] { new Gaussian(15.0, 100.0), //O 

                                                new Gaussian(30.0, 100.0) }; //E 

  initPriors.TrafficNoiseDist = new Gamma[] { new Gamma(2.0, 0.5), //O 

                                              new Gamma(2.0, 0.5) };//E 

  initPriors.MixingDist = new Dirichlet(1, 1); 

 

  CyclistMixedTraining cyclistMixedTraining = new CyclistMixedTraining(); 

  cyclistMixedTraining.CreateModel(); 

  cyclistMixedTraining.SetModelData(initPriors); 

 

  ModelDataMixed posteriors = cyclistMixedTraining.InferModelData(trainingData); 
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  //Print results 

 

  CyclistMixedPrediction cyclistMixedPrediction = new CyclistMixedPrediction(); 

  cyclistMixedPrediction.CreateModel(); 

  cyclistMixedPrediction.SetModelData(posteriors); 

 

  Gaussian tomorrowsTime = cyclistMixedPrediction.InferTomorrowsTime(); 

 

  double tomorrowsMean = tomorrowsTime.GetMean(); 

  double tomorrowsStdDev = Math.Sqrt(tomorrowsTime.GetVariance()); 

 

  //Print results 

} 

 
 

The training data set is identical to that used by CyclingTime2, except for two 
additional times at the end of the array that represent extraordinary events. 

RunCyclingTime3 creates the following initial priors: 

• The ordinary mixture component has the same initial priors that were used by 
CyclingTime2. 

They are labelled O in the example. 

• The extraordinary mixture component sets the mean travel time to 30, based on 
the estimate that extraordinary events add around 15 minutes to a trip. 

The extraordinary priors are labelled E in the example. The AverageTime initial 
prior’s precision value and the TrafficNoise initial prior are set to the same values 
as used for the ordinary component. 

• The initial prior for MixingDist is a Dirichlet(1, 1) distribution. 

As discussed later in “Discrete Distributions” in Chapter 6, this distribution 
corresponds to an equal proportion of both components with a relatively large 
uncertainty. 

 

Important: If you can’t estimate initial priors for the mixture components, you 
typically set them to the same values. However, if you use identical priors for all 
mixture components you must initialise the model to break its symmetry, which is 
beyond the scope of this document. See “Tutorial 6: Mixture of Gaussians” in 
“Resources” for a discussion of how to handle this case. 

RunCyclingTime3 creates an instance of CyclingMixedTraining, calls CreateModel to 
create the model, and calls SetModelData to specify the priors. RunCyclingTime3 then 
calls InferModelData to infer posteriors for the model’s means, precisions, and mixing 
coefficients and prints the following results: 

Average time distribution 1 = Gaussian(14.7, 0.3533) 
Average time distribution 2 = Gaussian(29.51, 1.618) 
Noise distribution 1 = Gamma(7, 0.0403)[mean=0.2821] 
Noise distribution 2 = Gamma(3, 0.1013)[mean=0.304] 
Mixing coefficient distribution = Dirichlet(11 3) 
 

Distribution 1 corresponds to ordinary travel times and distribution 2 to extraordinary 
travel times. 
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After training the model, RunCyclingTime3 creates an instance of 
CyclistMixedPrediction, creates the model, and sets the priors to the just-computed 
posteriors. The results are: 

Tomorrow’s expected time: 17.03 
Tomorrow’s standard deviation: 5.71  
 

The mean predicted travel time and the standard deviation are both larger than for 
CyclingTime2, which reflects the inclusion of extraordinary events in the model. 



Infer.NET 101 – 46  

 

Chapter 6   

Digression: Discrete Distributions and the 

Inference Engine 

Discrete Distributions 

CyclingTime1 and CyclingTime2 were based on Gaussian and Gamma distributions. 
They are called continuous distributions because they define probabilities—more 
precisely, probability densities—for random variables that have a continuous range of 
possible values. However, some random variables have a specified set of possible 
values. For example, a random variable that represents the outcome of throwing a 
standard die would have six possible values. 

Random variables with an enumerable set of possible values are defined by discrete 
distributions, which assign a probability to each possible value with the constraint 
that the probabilities must sum to 1.0. The two most commonly used distributions 
are Bernoulli and Discrete (sometimes called Categorical), which are briefly discussed 
in this section.  

Bernoulli Distribution 

The Bernoulli distribution is used for variables that have two possible values. Strictly, 
the Bernoulli distribution is used to define bool random variables, but you can 
generalize it to any pair of possible values by mapping one value to true and the 
other to false. 

The Bernoulli distribution has a single parameter, probabilityTrue, which specifies the 
probability that the random variable is true. For a fixed distribution, you set the 
parameter to an appropriate value between 0 and 1.0. For example, the following 
code uses the Variable.Bernoulli factory method to create and define the willBuy 
random variable. The variable has a 60% probability of being true.  

Variable<bool> willBuy = Variable.Bernoulli(0.6); 

 
 

The conjugate prior for the Bernoulli distribution’s probabilityTrue parameter is a 
Beta distribution, which is a continuous distribution on [0, 1]. It represents the 
probability that probabilityTrue has each of the values from that range. 
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The Beta distribution’s shape is controlled by two parameters, a and b. The ratio of a 
and b controls the location of the peak of the curve: 

• If b/a = 1, the peak is at x = 0.5. 

If a = b = 1, the distribution is flat. 

• If b/a > 1, the peak is between x = 0 and x = 0.5. 

The larger the ratio, the closer the peak is to 0. 

• If b/a < 1, the peak is between x = 0.5 and x = 1.0. 

The smaller the ratio, the closer the peak is to 1.0. 
 

The distribution’s width is given by √𝑎𝑏/(𝑎 + 𝑏), so larger values of a + b define a 
narrower distribution. 

Figure 7 shows Beta distributions for some representative values of a and b. 

 

Figure 7. Beta distribution 

A convenient way to think of a and b is that they are pseudo counts that represent 
the results of a series of trials:  

• a is the number of true results and b is the number of false results. 

• If a = b, true and false are equally probable. 

If a = b = 1, all possible parameter values have the same probability. For larger 
values of a and b, the distribution is peaked, with a mean probability of 0.5. 

• If a > b, true is more likely, and if a < b, false is more likely. 

• A larger value of a + b corresponds to more trials, which yields a narrower 
distribution and a more accurate parameter estimate. 
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Discrete Distribution 

Variables with two or more possible values are defined by a Discrete distribution, 
which can represent any number of possible values. A Discrete distribution has the 
following characteristics, assuming N possible values: 

• The possible values are integers over the range [0, N-1]. 

Discrete distributions are thus associated with Variable<int> random variables. 

• N is a positive integer (not zero). 

• Each possible value is associated with a probability in the range [0.0, 1.0]. 

The probabilities must sum to 1.0. 
 

The conjugate prior of a Discrete distribution’s probability vector is a Dirichlet 
distribution, which is a generalization of the Beta distribution to any number of 
possible values. Dirichlet distributions are defined by a set of parameters, one for 
each possible value. Each parameter can be treated as a pseudo-count, much like the 
Beta distribution parameters:  

• The relative values of the pseudo counts define the relative probabilities of each 
possible value. 

• The sum of the pseudo counts defines the variance. 

A larger sum corresponds to a smaller variance and a more accurate estimate. 
 

How the Inference Engine Works 

The code required to infer a posterior distribution is often very complicated and 
difficult to implement correctly. With Infer.NET, applications don’t have to implement 
this code. Instead, they call the inference engine, which uses the priors, model, and 
observations to compute the requested marginal “behind the scenes”. This section 
demystifies that process a bit by explaining in general terms how the inference 
engine works. 

The inference engine handles the computation by passing messages between the 
code that represents different parts of the graph. Figure 8 shows the CyclingTime1 
training model, with arrows indicating the message direction. 

AverageTime

Gaussian Factor

TravelTime

TrafficNoise

Gaussian Factor

TravelTime

(a) (b)

TrafficNoise AverageTime

 

Figure 8. Message passing 
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When you impose a condition on one of the nodes, such as assigning the training data 
to TravelTimes, the inference engine must modify the other nodes’ distributions to 
reflect the change. To do so, TravelTimes passes a message to the Gaussian factor, as 
shown in Figure 8a. The factor then computes two new messages that pass up the 
graph to AverageTime and TrafficNoise, which recompute their distributions using the 
new information. 

If this were an exact computation, the process would be finished at this point. 
However, most inference computations are approximate, so AverageTime and 
TrafficNoise are not exact. Instead, they pass messages back to the Gaussian factor. 
The Gaussian factor passes a message back to TravelTimes, and so on, as shown in 
Figure 8b. The process continues repeating until the engine arrives at a stable set of 
distributions. 

The message passing mechanism doesn’t have a preferred direction, which allows the 
engine to reason backwards as well as forwards. A better way to think about 
inference is that the engine takes the model, the priors, and any observed data and 
comes up with a consistent set of distributions for the variables, regardless of where 
the observed variables and the requested marginal are located on the graph. 

The exact details of the messages depend on the particular inference algorithm that 
is used in the model. The Infer.NET inference engine currently supports three 
inference algorithms, each of which is implemented by a separate class: 

• Expectation propagation, which is the default algorithm 
(Microsoft.ML.Probabilistic.ExpectationPropagation). 

• Variational message passing 
(Microsoft.ML.Probabilistic.VariationalMessagePassing). 

• Gibbs sampling (Microsoft.ML.Probabilistic.GibbsSampling). 
 

Each algorithm has different characteristics, so you choose the one that is best suited 
for your particular model. For more information, see “Running inference.” 

Caution: The model does not depend on the particular algorithm that you use for 
inference, so in principle, you can switch algorithms without touching the modelling 
code. However, the different algorithms don’t necessarily support every possible 
distribution or factor, so some models are compatible only with certain algorithms. 
For details, see “List of Factors and Constraints” in “Resources.” 

Another issue that can arise is that sometimes your choice of priors, data, and so on 
can cause some algorithms to generate improper messages, which causes the 
inference engine to throw an ImproperDistributionException. For example, a 
message with a negative Gaussian precision value would be improper. Sometimes 
you can fix the problem by using a different inference algorithm. For example, 
CyclingTime3 generates improper messages with the expectation propagation 
algorithm, but runs correctly with variational message passing. 

For more information about the inference engine, see the “Running Inference” in 
“Resources.” 
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Chapter 7   

CyclingTime4 Application: Model 

Comparison 

There are now two models to represent cyclists’ travel time, one based on a single 
Gaussian and the other based on a mixture of two Gaussians. Why not a model based 
on a mixture of three Gaussians, or twenty or thirty Gaussians? Or is a single Gaussian 
sufficient? How do you pick the best model? 

In general, a complex model with more adjustable parameters represents a particular 
data set more accurately than a simpler model with fewer parameters. The more 
interesting question is whether the more complex model provides a better 
representation than a simpler model. Models that become too good at fitting a 
particular data set won’t be useful in practice since they won’t necessarily fit new 
data well.  

For example, when you fit a polynomial to a set of data points, you can always get an 
exact fit by adding enough elements to the polynomial. However, a model that 
exactly hits every data point typically swings wildly in between and so won’t match 
new data well. This phenomenon is known as overfitting, and might look something 
like Model A in Figure 9. 

x

f(x)

Model A

Model C

Model B

 

Figure 9. Fitting and overfitting 

Model A might be more accurate in the sense that it fits the data better than the 
other two models, but it’s not very plausible or useful. If you use Model A to predict a 
value that is between the original points, the result will probably not be very close to 
the actual value. Model B fits the data almost as well, but provides much better 
predictions. Model C is even simpler, but doesn’t fit the data or predict future values 
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as well as Model B. In practice, some complexity is useful, but eventually you reach a 
point of diminishing returns beyond which additional complexity is detrimental. 

The best model is therefore one that fits the data reasonably well without being 
overly complex. However, visually comparing the models to the data is subjective and 
not very practical for any but the simplest scenarios. What you need is an Occam’s 
razor, which quantitatively evaluates model quality and determines the optimal 
trade-off between accuracy and complexity. Such a mechanism is in fact an integral 
part of Bayesian inference, which includes a robust way to evaluate model quality 
called model evidence, which is often abbreviated to evidence.  

Evidence is essentially a measure of how well a training model predicts the training 
data, penalised by the probability of the training model itself—more complex models 
are less probable. Evidence automatically incorporates the trade-off between 
accuracy and complexity: 

• Overly simplistic models have low evidence values because they don’t fit data 
very well. 

• Overly complex models have low evidence values because the probability of the 
particular parameterisation which gives the good fit is very unlikely. 

 

The optimal model is somewhere in between, and indicated by the maximum 
evidence value. For a more thorough discussion of evidence, see “Bayesian 
Interpolation” in “Resources.” 

The CyclingTime4 application uses evidence to assess whether the CyclingTime2 or 
CyclingTime3 model best represents the CyclingTime3 training data. 

How to Compute Evidence with Infer.NET 

With Infer.NET, evidence is represented by a bool random variable. The basic 
procedure is shown schematically in the following example. 

Variable<bool> Evidence = Variable.Bernoulli(0.5); 

using (Variable.If(Evidence)) 

{ 

  //Implement the training model to be evaluated 

} 

  //Observe the training data 

  //Query the inference engine for model posteriors 

  //Query the inference engine for the evidence distribution 

 
 

Infer.NET defines two-branch models by using Variable.If and Variable.IfNot, which 
are the Infer.NET equivalent of if-else. The condition is a bool random variable. The 
probability that the condition is true determines the proportion of the If branch in 
the mixture, and the remainder of the mixture is the IfNot branch. 

To evaluate a model’s evidence, you use If/IfNot as shown in the example, which 
create a mixture of two models. 

• The model that you want to evaluate, which is represented by the If branch. 

• An “empty” model, which is effectively represented by the missing IfNot branch. 
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The Evidence variable is the condition that controls the proportions in the mixture. Its 
initial prior is usually set to Bernoulli(0.5). To determine the actual evidence 
distribution, observe the data and compute the Evidence posterior. 

Note. To evaluate evidence in this way: 

• All modelling code must be in the If block. 

You can declare random variables outside the block, but you must create and 
define them inside the block. 

• The code that queries the inference engine must be outside the If block. It is good 
programming practice to also observe data outside the If block, but not required. 

 

The following sections describe how CyclingTime4 uses evidence to compare the 
CyclingTime2 and CyclingTime3 models: 

• The CyclingTime2 model is based on a single Gaussian and is represented by the 
CyclistTraining class. 

• The CyclingTime3 model is based on a mixture of two Gaussians and is 
represented by the CyclistMixedTraining class. 

• A RunCyclingTime4 static method creates and trains the models and displays the 
results. 

 

CyclingTime4 uses both classes without modification, so they are not discussed here. 
For simplicity, CyclingTime4 does not do any prediction, so it does not use 
CyclistPrediction and CyclistMixedPrediction.  

To compute evidence, CyclingTime4 implements a pair of lightweight classes, 
CyclistWithEvidence and CyclistMixedWithEvidence, which inherit from CyclistTraining 
and CyclistMixedTraining, respectively. The RunCyclingTime4 method creates the 
models and determines the results. 

The CyclingTime4 classes are implemented in CyclingTime4.cs. RunCyclingTime4 is 
implemented as a static method in RunCyclingSamples.cs. 

CyclistWithEvidence Class 

The CyclistWithEvidence class evaluates evidence for the CyclistTraining model. 

public class CyclistWithEvidence : CyclistTraining 

{ 

  protected Variable<bool> Evidence; 

 

  public override void CreateModel() 

  { 

    Evidence = Variable.Bernoulli(0.5); 

    using (Variable.If(Evidence)) 

    { 

      base.CreateModel(); 

    } 

  } 
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public double InferEvidence(double[] trainingData) 

  { 

    double logEvidence; 

    ModelData posteriors = base.InferModelData(trainingData); 

    logEvidence = InferenceEngine.Infer<Bernoulli>(Evidence).LogOdds; 

       

    return logEvidence; 

  } 

} 

 
 

CyclistWithEvidence inherits from CyclistTraining, and has two methods, CreateModel 
and InferEvidence. 

CreateModel implements the evidence block. Within the block, it calls the 
corresponding base class method to create the model.  

InferEvidence takes the training data and calls the base class InferModelData method 
to infer the posteriors. It then queries the inference engine for the Evidence 
distribution and returns the posterior’s LogOdds value. Evidence values tend to be 
quite small, so it is usually easier to compare the logarithms than to compare the 
values themselves. 

CyclistMixedWithEvidence Class 

The CyclistMixedWithEvidence class evaluates evidence for the CyclistMixedTraining 
model. 

public class CyclistMixedWithEvidence : CyclistMixedTraining 

{ 

  protected Variable<bool> Evidence; 

 

  public override void CreateModel() 

  { 

    Evidence = Variable.Bernoulli(0.5); 

    using (Variable.If(Evidence)) 

    { 

      base.CreateModel(); 

    } 

  } 

 

  public double InferEvidence(double[] trainingData) 

  { 

    double logEvidence; 

    ModelDataMixed posteriors = base.InferModelData(trainingData); 

    logEvidence = InferenceEngine.Infer<Bernoulli>(Evidence).LogOdds; 

 

    return logEvidence; 

  } 

} 

 
 

The class is nearly identical to CyclistWithEvidence and works in the same way. The 
main difference is that CyclistMixedWithEvidence inherits from CyclistMixedTraining, 
which means that the base.CreateModel call in CreateModel creates the CyclingTime3 
model. 
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Computing Evidence 

RunCyclingTime4 computes the evidence for the two models and prints the results. 
Both models use the CyclingTime3 training data set and initial priors. 

The first part of RunCyclingTime4 computes the evidence for the CyclingTime2 model, 
as shown in the following example. 

public static void RunCyclingTime4() 

{ 

  double[] trainingData = 

              new double[] { 13, 17, 16, 12, 13, 12, 14, 18, 16, 16, 27, 32}; 

 

  ModelData initPriors = new ModelData( 

    Gaussian.FromMeanAndPrecision(15.0, 0.01), 

    Gamma.FromShapeAndScale(2.0, 0.5)); 

  CyclistWithEvidence cyclistWithEvidence = new CyclistWithEvidence(); 

  cyclistWithEvidence.CreateModel(); 

  cyclistWithEvidence.SetModelData(initPriors); 

   

  double logEvidence = cyclistWithEvidence.InferEvidence(trainingData); 

  ... 

} 

 
 

RunCyclingTime4 creates an instance of CyclistWithEvidence, calls CreateModel to 
create the model, and calls SetModelData to specify the initial priors. It then passes 
the training data to InferEvidence, which returns the log of the evidence value. 

The second part of RunCyclingTime4 computes the evidence for the CyclingTime3 
model. 

static void RunCyclingTime4 ( ) 

{ 

  ... 

  ModelDataMixed initPriorsMixed; 

  initPriorsMixed.AverageTimeDist = new Gaussian[] {new Gaussian(15.0, 100), 

                                                    new Gaussian(30.0, 100) }; 

  initPriorsMixed.TrafficNoiseDist = new Gamma[] {new Gamma(2.0, 0.5), 

                                                  new Gamma(2.0, 0.5) }; 

  initPriorsMixed.MixingDist = new Dirichlet(1, 1); 

 

  CyclistMixedWithEvidence cyclistMixedWithEvidence = 

          new CyclistMixedWithEvidence(); 

  cyclistMixedWithEvidence.CreateModel(); 

  cyclistMixedWithEvidence.SetModelData(initPriorsMixed); 

 

  double logEvidenceMixed = cyclistMixedWithEvidence.InferEvidence(trainingData); 

 

  //Display results 

} 

 
 

RunCyclingTime4 handles the CyclingTime3 evidence computation in essentially the 
same way as it did for CyclingTime2 and then prints the results, as follows: 

Log evidence for single Gaussian: -45.80 
Log evidence for mixture of two Gaussians: -40.98 
 

The evidence values indicate that the mixture model is probably better. 
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Note: Evidence values are usually quite small, especially for large amounts of data. 
This is why the example uses the logarithm of the evidence value rather than the 
value itself. What matters is the relative size of the two values, not their absolute 
values. It is sometimes useful to normalize the log evidence by dividing the value by 
the number of data points. 
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Chapter 8   

CyclingTime5 Application: A Model for Two 

Cyclists 

The CyclingTime1 - CyclingTime4 examples are all based on a single cyclist’s travel 
time. However, the original scenario was for multiple cyclists, so you need a way to 
represent each cyclist, handle their data, and compare their performance. 

To construct a model for multiple cyclists, you must represent each cyclist by a 
random variable, and use the techniques discussed in the previous walkthroughs to 
train the models and compute posteriors. However, you can also use Infer.NET 
operators to make more complex predictions, such as estimating the probability that 
one cyclist will have a faster time. 

This section is a walkthrough of the CyclingTimes5 sample. It implements a model for 
two cyclists, and uses the trained model to make some predictions about their 
relative performance. For the model’s factor graph, see Chapter 9. 

CyclingTimes5 has three basic components: 

• CyclistTraining and CyclistPrediction classes, instances of which represent each 
cyclist. 

These are the same classes that were introduced in CyclingTime2, and are used 
here without modification. An advantage of the programming pattern introduced 
in CyclingTime2 is that it can be easily extended to handle any number of cyclists. 

• A pair of classes, TwoCyclistsTraining and TwoCyclistsPrediction, which implement 
the overall training and prediction models, including the code to predict the two 
cyclists’ relative performance. 

• A RunCyclingTime5 method, which uses instances of TwoCyclistsTraining and 
TwoCyclistsPrediction to train the model and make predictions. 

 

The CyclingTime5 classes are implemented in CyclingTime5.cs. RunCyclingTime5 is 
implemented as a static method in RunCyclingSamples.cs.  

TwoCyclistsTraining Class 

The TwoCyclistsTraining class implements the overall training model. The basic class 
structure is similar to CyclistsTraining, as shown in the following example: 
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public class TwoCyclistsTraining 

{ 

  private CyclistTraining cyclist1, cyclist2; 

 

  public void CreateModel() {...} 

 

  public void SetModelData(ModelData modelData) {...} 

 

  public ModelData[] InferModelData(double[] trainingData1, 

                                    double[] trainingData2) {...} 

 
 

The training model trains the models for each cyclist. The training is handled by the 
CyclistTraining class, as discussed earlier, so TwoCyclistsTraining is basically a wrapper 
over a pair of CyclistTraining objects. 

CreateModel Method 

The CreateModel method creates an instance of CyclistTraining for each cyclist and 
calls their CreateModel methods to create the training model. 

public void CreateModel() 

{ 

  cyclist1 = new CyclistTraining(); 

  cyclist1.CreateModel(); 

  cyclist2 = new CyclistTraining(); 

  cyclist2.CreateModel(); 

} 
 

SetModelData Method 

The SetModelData method passes initial priors to the CyclistTraining.SetModelData 
methods. 

public void SetModelData(ModelData modelData) 

{ 

  cyclist1.SetModelData(modelData); 

  cyclist2.SetModelData(modelData); 

} 
 

For simplicity, TwoCyclistsTraining uses the same priors for each model. 

InferModelData Method 

The InferModelData method determines the posteriors for both CyclistTraining 
models by passing the appropriate training data array to each 
CyclistTraining.InferModelData method. 

public ModelData[] InferModelData(double[] trainingData1, 

                                  double[] trainingData2) 

{ 

  ModelData[] posteriors = new ModelData[2]; 

 

  posteriors[0] = cyclist1.InferModelData(trainingData1); 

  posteriors[1] = cyclist2.InferModelData(trainingData2); 

 

  return posteriors; 

} 
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InferModelData returns the posteriors for the two models as an array of ModelData 
structures. 

TwoCyclistsPrediction Class 

The TwoCyclistsPrediction class implements the overall prediction model. The 
following example shows the class structure: 

public class TwoCyclistsPrediction 

{ 

  private CyclistPrediction cyclist1, cyclist2; 

  private Variable<double> TimeDifference; 

  private Variable<bool> Cyclist1IsFaster; 

  private InferenceEngine CommonEngine; 

 

  public void CreateModel() {...} 

 

  public void SetModelData(ModelData[] modelData) {...} 

 

  public Gaussian[] InferTomorrowsTime() {...} 

 

  public Gaussian InferTimeDifference() {...} 

 

  public Bernoulli InferCyclist1IsFaster() {...} 

} 

 
 

TwoCyclistsPrediction is similar to CyclistPrediction. However, it has some additional 
fields and methods to support predicting the relative performance of the two cyclists, 
which are discussed in the following sections. 

CreateModel Method 

The CreateModel method creates the overall model. 

public void CreateModel() 

{ 

  CommonEngine = new InferenceEngine(); 

 

  cyclist1 = new CyclistPrediction() {InferenceEngine = CommonEngine}; 

  cyclist1.CreateModel(); 

  cyclist2 = new CyclistPrediction() {InferenceEngine = CommonEngine}; 

  cyclist2.CreateModel(); 

 

  TimeDifference = cyclist1.TomorrowsTime - cyclist2.TomorrowsTime; 

  Cyclist1IsFaster = cyclist1.TomorrowsTime < cyclist2.TomorrowsTime; 

} 

 
 

CreateModel creates an instance of the inference engine, CommonEngine, which is 
used to infer all predicted values. By using a common inference engine, the model is 
compiled only once, which provides significantly better performance than using three 
separate engines, each of which would have to compile the model. 

The first part of CreateModel creates a CyclistPrediction instance for each cyclist. It 
assigns CommonEngine to their InferenceEngine fields, which ensures that all 
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prediction-related queries use the same engine. CreateModel then calls the 
CyclistPrediction.CreateModel methods to create models for each cyclist. 

The final two lines use the TomorrowsTime results from the individual models to 
implement the following predictions about the cyclists’ relative performance. 

• TimeDifference is a double random variable that represents the difference 
between tomorrows predicted travel time for Cyclist 1 and Cyclist 2. 

• Cyclist1IsFaster is a bool random variable that represents the probability that 
tomorrow, Cyclist 1 is faster than Cyclist 2. 

 

These predictions are implemented by using the ‘-‘ (subtraction) and ‘<’ (less-than) 
operators, respectively. Infer.NET overloads these operators—along with other 
standard mathematical and logical operators—to perform similar operations on 
random variables. Infer.NET operators are discussed in more detail in Chapter 9. 

SetModelData and InferTomorrowsTime Methods 

These two methods are basically wrappers for the corresponding methods on the two 
CyclistPrediction objects. 

public void SetModelData(ModelData[] modelData) 

{ 

  cyclist1.SetModelData(modelData[0]); 

  cyclist2.SetModelData(modelData[1]); 

} 

 

public Gaussian[] InferTomorrowsTime() 

{ 

  Gaussian[] tomorrowsTime = new Gaussian[2]; 

 

  tomorrowsTime[0] = cyclist1.InferTomorrowsTime(); 

  tomorrowsTime[1] = cyclist2.InferTomorrowsTime(); 

  return tomorrowsTime; 

} 

 
 

The methods pass the appropriate information to the CyclistPrediction methods and 
return the results to Main. 

InferTimeDifference and InferCyclist1IsFaster Methods 

These methods infer tomorrow’s relative performance. 

public Gaussian InferTimeDifference() 

{ 

  return CommonEngine.Infer<Gaussian>(TimeDifference); 

} 

 

public Bernoulli InferCyclist1IsFaster() 

{ 

  return CommonEngine.Infer<Bernoulli>(Cyclist1IsFaster); 

} 

 
 

Both methods query for predicted distributions for their respective variables. 

• InferTimeDifference queries for the TimeDifference marginal, and returns the 
resulting Gaussian distribution. 
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• InferCyclist1IsFaster queries for the Cyclist1IsFaster marginal, and returns the 
resulting Bernoulli distribution. 

Use the Model 

The first part of RunCyclingTime5 creates and trains a TwoCyclistsTraining model, and 
prints the results. 

static void RunCyclingTime5 (string[] args) 

{ 

  double[] trainingData1 = 

          new double[]{ 13, 17, 16, 12, 13, 12, 14, 18, 16, 16, 27, 32 }; 

  double[] trainingData2 = 

          new double[] { 16, 18, 21, 15, 17, 22, 28, 16, 19, 33, 20, 31 }; 

  ModelData initPriors = new ModelData(new Gaussian(15.0, 100.0), 

                                        new Gamma(2.0, 0.5)); 

 

  //Train the model 

  TwoCyclistsTraining cyclistsTraining = new TwoCyclistsTraining(); 

  cyclistsTraining.CreateModel(); 

  cyclistsTraining.SetModelData(initPriors); 

 

  ModelData[] posteriors1 = cyclistsTraining.InferModelData(trainingData1, 

trainingData2); 

 

  //Print results 

  ... 

} 

 
 

RunCyclingTime5 creates an instance of TwoCyclistsTraining, calls CreateModel to 
create the model, and then passes the initial mean and precision prior to 
SetModelData. Cyclist 1 uses the same training data as CyclingTime3 and 
CyclingTime4, and Cyclist 2 uses a new data set. 

RunCyclingTime5 then calls InferModelData to infer posteriors for the cyclists’ 
AverageTime and TrafficNoise distributions and prints the following results: 

Cyclist 1 average travel time: Gaussian(17.12, 2.741) 
Cyclist 1 traffic noise: Gamma(6.712, 0.00536)[mean=0.03597] 
Cyclist 2 average travel time: Gaussian(21.19, 2.722) 
Cyclist 2 traffic noise: Gamma(6.4, 0.00577)[mean=0.03693] 
 

RunCyclingTime5 then uses these posteriors to make several predictions as follows: 

static void RunCyclingTime5 (string[] args) 

{ 

  ... 

  TwoCyclistsPrediction cyclistsPrediction = new TwoCyclistsPrediction(); 

  cyclistsPrediction.CreateModel(); 

  cyclistsPrediction.SetModelData(posteriors1); 

 

  Gaussian[] posteriors2 = cyclistsPrediction.InferTomorrowsTime(); 

 

//Print results 

 

  Gaussian timeDifference = cyclistsPrediction.InferTimeDifference(); 

  Bernoulli cyclist1IsFaster = cyclistsPrediction.InferCyclist1IsFaster(); 
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//Print results 

} 

 

 
 

RunCyclingTime5 creates an instance of TwoCyclistsPrediction, calls CreateModel to 
create the prediction model, and passes the AverageTime and TrafficNoise posteriors 
to SetModelData. It then calls the three prediction methods, with the following 
results: 

Cyclist1 tomorrow's travel time: Gaussian(17.12, 35.4) 
Cyclist2 tomorrow's travel time: Gaussian(21.19, 34.81) 
Time difference: Gaussian(-4.075, 70.22) 
Probability that cyclist 1 is faster: Bernoulli(0.6866) 
 

The mean predicted time difference shows Cyclist 1 arriving in roughly 17 minutes, 
well before Cyclist 2, who arrives in about 21 minutes. However, that prediction isn’t 
a firm number; it’s the mean value of a distribution that has a relatively large 
variance. There’s a reasonable probability that Cyclist 1 is actually slower than Cyclist 
2. A different and perhaps more useful way to evaluate the odds is to look at the 
probability that Cyclist 1 is faster. Even though the mean time difference is relatively 
large, the large variance means that the probability that Cyclist 1 is faster is only 69%. 
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Chapter 9   

Digression: Functions of Random Variables 

Machine learning applications often must ask questions such as “what is the 
probability that a random variable is larger than a specified value.” With multivariate 
models, interesting questions often involve two or more variables, such as: 

• Which random variable is larger? 

• What is the probability that both variables are true? 

• What is the sum or difference of two random variables? 
 

You implement such questions in a model by using Infer.NET factor functions, usually 
abbreviated to just factor. Factors are functions that can take and return random 
variables. Infer.NET supports a wide range of factors, including: 

• Mathematical operations such as Variable<T>.Addition, which perform 
operations on individual random variables or pairs of random variables.  

For convenience Infer.NET overrides standard .NET mathematical operators, such 
as +, *, -, and / to map them to the equivalent Infer.NET factors.  

• Boolean and comparison factors perform logical or comparison operations on 
individual random variables and pairs of random variables.  

For convenience, Infer.NET overrides standard logical operators, such as &, |, >, 
==, !, and < to map them to the equivalent Infer.NET factors.  

• Linear Algebra factors perform matrix operations on pairs of random variables, 
including matrix-matrix, matrix-vector and vector-vector (inner product) 
multiplication. 

 

The Infer.NET factors act on random variables rather than specific values, and 
produce another random variable. For example, CyclingTime5 uses a subtraction (-) 
factor to define the difference between the travel times. The resulting TimeDifference 
random variable’s distribution specifies the probabilities for the possible differences. 
For details about the available factors, see “Factors and Constraints” in “Resources.” 

When using a factor to create a random variable, Infer.NET associates the factor with 
the resulting Variable<T> instance. For example, Figure 10 shows a factor graph for 
the TwoCyclist time difference prediction model.  



Infer.NET 101 – 63  

 

Gaussian Factor Gaussian Factor

TimeDifference

Subtraction Factor

TomorrowsTime

Cyclist 2

AverageTime TrafficNoiseTrafficNoiseAverageTime

TomorrowsTime

Cyclist 1

 

Figure 10. Factor graph to predict the time difference 

The upper part of the model is implemented by the Cyclist class, as discussed earlier. 
The subtraction factor then operates on the TomorrowsTime variables to produce the 
TimeDifference variable. In this case, the variable is approximated by a Gaussian that 
specifies the distribution over time differences. You could further refine this model by 
using additional factors to evaluate the probability that Cyclist 1 is faster by more 
than one minute, and so on. 

Note: The factor graph for the model that predicts the probability that Cyclist 1 is 
faster is nearly identical to Figure 10. Just replace the subtraction operator with a 
less-than (<) factor and the TimeDifference random variable with Cyclist1IsFaster. 
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Resources 

This section provides links to additional information about Infer.NET and related 
topics. 

Infer.NET 
An Introduction to Infer.NET 

https://dotnet.github.io/infer/InferNet_Intro.pdf  

Applying functions and operators to variables 
https://dotnet.github.io/infer/userguide/Applying%20functions%20and%20opera
tors%20to%20variables.html  

Branching on variables to create mixture models 
https://dotnet.github.io/infer/userguide/Branching%20on%20variables%20to%2
0create%20mixture%20models.html  

Factors and Constraints 
https://dotnet.github.io/infer/userguide/Factors%20and%20Constraints.html  

Infer.NET 
https://dotnet.github.io/infer  

Infer.NET User Guide 
https://dotnet.github.io/infer/userguide  

List of factors and constraints 
https://dotnet.github.io/infer/userguide/list%20of%20factors%20and%20constra
ints.html  

Running inference 
https://dotnet.github.io/infer/userguide/Running%20inference.html  

Tutorials and Examples 
https://dotnet.github.io/infer/userguide/Infer.NET%20tutorials%20and%20exam
ples.html  

Tutorial 6: Mixture of Gaussians 
https://dotnet.github.io/infer/userguide/Mixture%20of%20Gaussians%20tutorial
.html  

Working with arrays and ranges 
https://dotnet.github.io/infer/userguide/Arrays%20and%20ranges.html  

Working with different inference algorithms 
https://dotnet.github.io/infer/userguide/Working%20with%20different%20infere
nce%20algorithms.html  

https://dotnet.github.io/infer/InferNet_Intro.pdf
https://dotnet.github.io/infer/userguide/Applying%20functions%20and%20operators%20to%20variables.html
https://dotnet.github.io/infer/userguide/Applying%20functions%20and%20operators%20to%20variables.html
https://dotnet.github.io/infer/userguide/Branching%20on%20variables%20to%20create%20mixture%20models.html
https://dotnet.github.io/infer/userguide/Branching%20on%20variables%20to%20create%20mixture%20models.html
https://dotnet.github.io/infer/userguide/Factors%20and%20Constraints.html
https://dotnet.github.io/infer
https://dotnet.github.io/infer/userguide
https://dotnet.github.io/infer/userguide/list%20of%20factors%20and%20constraints.html
https://dotnet.github.io/infer/userguide/list%20of%20factors%20and%20constraints.html
https://dotnet.github.io/infer/userguide/Running%20inference.html
https://dotnet.github.io/infer/userguide/Infer.NET%20tutorials%20and%20examples.html
https://dotnet.github.io/infer/userguide/Infer.NET%20tutorials%20and%20examples.html
https://dotnet.github.io/infer/userguide/Mixture%20of%20Gaussians%20tutorial.html
https://dotnet.github.io/infer/userguide/Mixture%20of%20Gaussians%20tutorial.html
https://dotnet.github.io/infer/userguide/Arrays%20and%20ranges.html
https://dotnet.github.io/infer/userguide/Working%20with%20different%20inference%20algorithms.html
https://dotnet.github.io/infer/userguide/Working%20with%20different%20inference%20algorithms.html
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General Background 
A family of algorithms for approximate Bayesian inference (describes expectation 
propagation) 

http://research.microsoft.com/en-us/um/people/minka/papers/ep/ 

Bayesian inference 
http://en.wikipedia.org/wiki/Bayesian_inference 

Bayesian Interpolation 
http://www.cs.uwaterloo.ca/~mannr/cs886-w10/mackay-bayesian.pdf 

Conjugate prior 
http://en.wikipedia.org/wiki/Conjugate_prior 

Gibbs sampling 
http://en.wikipedia.org/wiki/Gibbs_sampling 

Information Theory, Inference, and Learning Algorithms 
http://www.inference.phy.cam.ac.uk/mackay/itila/book.html 

Pattern Recognition and Machine Learning 
https://www.springer.com/us/book/9780387310732 

Variational message passing 
http://en.wikipedia.org/wiki/Variational_message_passing 

Distributions 
Bernoulli distribution 

http://en.wikipedia.org/wiki/Bernoulli_distribution 

Beta distribution 
http://en.wikipedia.org/wiki/Beta_distribution 

Dirichlet distribution 
http://en.wikipedia.org/wiki/Dirichlet_distribution 

Gamma distribution 
http://en.wikipedia.org/wiki/Gamma_distribution 

Gaussian distribution 
http://en.wikipedia.org/wiki/Gaussian_distribution 

Poisson distribution 
http://en.wikipedia.org/wiki/Poisson_distribution 

Multivariate normal distribution (vector Gaussian) 
http://en.wikipedia.org/wiki/Multivariate_normal_distribution 

Wishart distribution 
http://en.wikipedia.org/wiki/Wishart_distribution 

http://research.microsoft.com/en-us/um/people/minka/papers/ep/
http://en.wikipedia.org/wiki/Bayesian_inference
http://www.cs.uwaterloo.ca/~mannr/cs886-w10/mackay-bayesian.pdf
http://en.wikipedia.org/wiki/Conjugate_prior
http://en.wikipedia.org/wiki/Gibbs_sampling
http://www.inference.phy.cam.ac.uk/mackay/itila/book.html
http://research.microsoft.com/PRML/
http://en.wikipedia.org/wiki/Variational_message_passing
http://en.wikipedia.org/wiki/Bernoulli_distribution
http://en.wikipedia.org/wiki/Beta_distribution
http://en.wikipedia.org/wiki/Dirichlet_distribution
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Gaussian_distribution
http://en.wikipedia.org/wiki/Poisson_distribution
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://en.wikipedia.org/wiki/Wishart_distribution
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Appendix 

A: Terminology 

This appendix defines terminology specific to Infer.NET that is used in this document.  

Bayesian inference 
An approach to statistical analysis based on Bayes theorem that starts with prior 
beliefs and uses observations to update those beliefs in a principled way. Bayes 
theorem is straightforward in concept but the practical computations for all but a 
small number of cases are intractable. Bayesian inference is therefore done using 
either sampling techniques or advanced approximation techniques. 

Bernoulli distribution 
A distribution that specifies the probability of two possible outcomes, true or 
false. 

Beta distribution 
A continuous distribution over the range [0 ,1]. It is the form of the conjugate 
prior of the parameter of a Bernoulli distribution. 

conjugate prior 
A prior for a variable in a factor is conjugate if its posterior has the same form as 
the prior. 

continuous distribution 
A distribution with continuous range of possible values. 

Dirichlet distribution 
An extension of the Beta distribution to handle any number of possible values 

discrete distribution 
A distribution with an enumerable set of possible values. 

distribution 
The probability associated with each of a random variable’s possible values. 

domain type 
The type of a random variable’s possible values. The most common domain types 
are bool, int, and double. 

evidence 
A measure of how well a model fits the observed data. Evidence balances 
between fit and model complexity in a principled way based on Bayes theorem. 
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factor 
Defines a relationship between two or more random variables. A complex 
distribution can be built up as a product of factors. 

Gaussian distribution 
A classic “bell curve” distribution, commonly used to define random variables 
with continuous distributions. 

Gamma distribution 
A continuous distribution on [0, 1]. It is the form of the conjugate prior of the 
precision parameter of a Gaussian factor. 

inference engine 
Computes a requested posterior marginal, based on a model that defines the 
system’s joint probability, the priors, and any observations. 

joint probability 
The probability that a set of random variables has specified values. For example, 
given a set of three Boolean variables, A, B, and C, the probability A and B are 
true, and C is false is a joint probability. 

machine learning 
Techniques that allow applications to modify their behaviour, based on user 
interaction. 

marginal probability 
Defines a random variable’s probability distribution after the other random 
variables have been “summed out”. For example, given a set of three Boolean 
variables, A, B, and C, the probability that A is true, regardless of the values of B 
or C is a marginal probability. 

normal distribution 
Another name for a Gaussian distribution. 

observation 
A particular value that is assigned to a random variable. An observation 
effectively turns a random variable into a normal variable with a well-defined 
value. 

posterior 
A distribution that represents your understanding of a random variable after 
making one or more observations. 

prior 
A distribution that represents your prior understanding of a random variable. 

probability density function (pdf) 
A function that describes the relative probabilities associated with a continuous 
range of possible values. A pdf is scaled so that it integrates across all its values to 
1.  

random variable 
A variable whose value is uncertain, and has a set or range of possible values, 
each of which has an associated probability. 
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B: System Requirements and Installation 

See the README at https://github.com/dotnet/infer 
 

Infer.NET Files 

The Infer.NET src folder contains the subfolders shown in the following list. 

 

Subfolder Description 

Compiler/bin Contains debug and release versions of the Infer.NET DLLs, debug 
(PDB) files, and XML files that contain documentation comments. 

Learners Contains Visual Studio projects and solution for complete machine 
learning applications including classification and recommendation. 

Examples Contains Visual Studio projects and solution for the sample 
applications and examples described in the Infer.NET user guide. It 
also includes the Visual Studio project for the examples in this 
document. 

Runtime Contains selected parts of the Infer.NET source tree. In particular, 
this folder includes source code for the distributions, factors, and 
message operators from the Infer.NET runtime library. 

 
 

For more information about the samples and learners, see 
https://dotnet.github.io/infer 

https://github.com/dotnet/infer
https://github.com/dotnet/infer/tree/master/src
https://dotnet.github.io/infer
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C: How to Build and Run Infer.NET Applications 

The following procedure describes the basics of how to implement an Infer.NET 
application. 

To Implement an Infer.NET Application 

1. Open Microsoft Visual Studio and create a new .NET project. 

2. Add references to Microsoft.ML.Probabilistic.Compiler.dll and 
Microsoft.ML.Probabilistic.dll.  This is easiest to do by referencing the Compiler 
NuGet package, which requires no installation. 

3. Add appropriate using declarations to your source files. 

The following using declarations are used by most Infer.NET applications. 

using Microsoft.ML.Probabilistic.Models; 

using Microsoft.ML.Probabilistic.Distributions; 
 


